CHEMISTRY A European Journal

Supporting Information

A Two-Component Alkyne Metathesis Catalyst System with an Improved Substrate Scope and Functional Group Tolerance:
Development and Applications to Natural Product Synthesis
Sebastian Schaubach, Konrad Gebauer, Felix Ungeheuer, Laura Hoffmeister, Marina K. Ilg, Conny Wirtz, and Alois Fürstner*[a]
chem_201601163_sm_miscellaneous_information.pdf

Table of Contents

General S-2
Synthesis of the Tridentate Ligands S-2
Homo-Metathesis Reactions S-5
Syntheses of the Diyne Model Substrates S-7
RCAM Reactions S-12
Total Synthesis of (\pm)-Manshurolide S-14
Total Synthesis of Ivorenolide A S-21
Studies towards Lythrancepin I S-26
Crystallographic Information S-39
References S-41

General. Unless stated otherwise, all reactions were carried out under Argon in flame-dried glassware. The solvents were purified by distillation over the indicated drying agents and were transferred under Argon: THF, $\mathrm{Et}_{2} \mathrm{O}(\mathrm{Mg} /$ anthracene $), \mathrm{CH}_{2} \mathrm{Cl}_{2},\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}, \mathrm{EtOAc}, \mathrm{MeCN}\left(\mathrm{CaH}_{2}\right)$, hexane, pentane, toluene (Na / K), MeOH, EtOH (Mg), DMF (MS 4 \AA), DMSO (distilled over CaH_{2}, stored over MS 4 \AA). Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$ or Merck silica gel $60(15-40 \mu \mathrm{~m})$. NMR: Spectra were recorded on Bruker DPX 300, AV 400, AV 500 or AVIII 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.26 \mathrm{ppm}\right.$, $\delta_{\mathrm{C}} \equiv 77.2 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}} \equiv 5.32 \mathrm{ppm}, \delta_{\mathrm{C}} \equiv 53.8 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: \delta_{\mathrm{H}} \equiv 7.16 \mathrm{ppm}, \delta_{\mathrm{C}} \equiv 128.0 \mathrm{ppm} ;\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}:$ $\left.\delta_{\mathrm{H}} \equiv 2.50 \mathrm{ppm}, \delta_{\mathrm{C}} \equiv 39.5 \mathrm{ppm}\right)$. In cases in which assignments are reported, they are based upon 1D and 2D spectra recorded using the following pulse sequences from the Bruker standard pulse program library: DEPT; COSY (cosygpqf and cosydqtp); HSQC (hsqcedetgpsisp2.2) optimized for ${ }^{1} J_{\mathrm{C}, \mathrm{H}}=145 \mathrm{~Hz}$; HMBC (hmbcetgpl3nd) for correlations via ${ }^{n} J_{C, H}$; HSQC-TOCSY (invietgsml) using an MLEV17 mixing time of 120 ms ; NOESY (noesygpph). IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers ($\tilde{\text { v }}$) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or Mat 95 (Finnigan). Unless stated otherwise, all commercially available compounds (ABCR, Acros, Aldrich, Alfa Aesar, TCI) were used as received.

Synthesis of the Tridentate Ligands

Phenyltrivinylsilane ($\mathbf{S} \mathbf{1}$). Trichloromethylsilane ($2.12 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added dropwise at room
 temperature over 60 min to a solution of vinylmagnesium bromide (1 m in THF, $31.0 \mathrm{~mL}, 31.0$ mmol) in THF (20 mL). After stirring for 16 h , the mixture was cooled to $0^{\circ} \mathrm{C}$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(30 \mathrm{~mL})$ was slowly introduced. Stirring was continued for 10 min at room temperature before the aqueous layer was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4}. Evaporation of the solvent and purification of the residue by flash chromatography (SiO_{2}, hexanes) afforded the title compound as a colorless oil ($1.23 \mathrm{~g}, 66 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.54-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.35(\mathrm{dd}, \mathrm{J}=19.9,14.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.21(\mathrm{dd}, \mathrm{J}=$ $14.6,4.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.84 \mathrm{ppm}(\mathrm{dd}, \mathrm{J}=19.9,4.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=136.1,135.2,134.6$, 133.9, 129.6, 128.0 ppm; IR (film): $\tilde{v}=3051,3007,2969,2944,1590,1428,1400,1266,1110,1006,956$, 809, 699, 619, 549, $471 \mathrm{~cm}^{-1}$; HRMS (EI (FE)): m/z: calcd. for [$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Si}^{\dagger}$: 186.0864 , found: 186.0865 . The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{1}$

1,3,5-Triallylbenzene (10a). A solution of 1,3,5-tribromobenzene 9 a ($1.67 \mathrm{~g}, 5.32 \mathrm{mmol}$),
 allyltributylstannane ($5.87 \mathrm{~g}, 17.7 \mathrm{mmol}$) and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(1.54 \mathrm{~g}, 1.33 \mathrm{mmol}, 25 \mathrm{~mol} \%)$ in toluene (8 mL) was stirred for 18 h at $120^{\circ} \mathrm{C}$ in a closed JYoung tube. After cooling to room temperature, the reaction was quenched with sat. aq. KF (20 mL). The mixture was diluted with tert-butyl methyl ether (20 mL) and stirred for 15 min before water (30 mL) and aq. sat. Na / K-tartrate (10 mL) were added. The aqueous layer was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$), the combined extracts were dried over MgSO_{4} and the solvent was evaporated. The crude product was purified by distillation $\left(10^{-3} \mathrm{mbar}, 65^{\circ} \mathrm{C}\right)$ to give the title compound as a colorless oil ($801 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.87(\mathrm{~s}, 3 \mathrm{H}), 5.96(\mathrm{ddt}, \mathrm{J}=17.0,10.1,6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 5.04-5.12(\mathrm{~m}, 6 \mathrm{H}), 3.35 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.5,137.7$,
126.8, 115.8, 40.3 ppm; HRMS (EI): m / z : calcd. for [$\mathrm{C}_{15} \mathrm{H}_{18}$]: 198.1410, found: 198.1409. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{2}$

1,3,5-Tribromo-2,4,6-triethylbenzene (9b). 1,3,5-Triethylbenzene ($3.86 \mathrm{~g}, 23.8 \mathrm{mmol}$) was added over 15 min to a mixture of bromine $(20 \mathrm{~mL})$ and iron powder ($400 \mathrm{mg}, 7.16 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 16 h before it was slowly poured into a solution of $\mathrm{KOH}(30 \mathrm{~g})$ in aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. After extraction of the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4}. The solvent was removed and the residue recrystallized from ethanol to give 1,3,5-tribromo-2,4,6triethylbenzene as a colorless crystalline solid ($7.20 \mathrm{~g}, 76 \%$). $\mathrm{mp}=103-105^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=3.14(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.17 \mathrm{ppm}(\mathrm{t}, J=7.7 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.6,124.4,32.8$, 12.4 ppm ; IR (film): $\tilde{v}=2971,2935,2870,1534,1461,1360,1313,1240,1075,1054,1003,893,784,663$, $620 \mathrm{~cm}^{-1}$; HRMS (EI(DE)): m/z: calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Br}_{3}\right]^{+}: 395.8723$, found: 395.8724. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{3}$

1,3,5-Triallyl-2,4,6-triethylbenzene (10b). Allyltributylstannane ($8.54 \mathrm{~g}, 25.8 \mathrm{mmol}$) was added to a
 solution of compound $9 \mathbf{~ b}(2,57 \mathrm{~g}, 6.45 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium $(1.16 \mathrm{~g}, 1.00 \mathrm{mmol}, 16 \mathrm{~mol} \%)$ and CsF ($3.04 \mathrm{~g}, 20.0 \mathrm{mmol}$) in DMF (15 mL). The mixture was stirred for 3.5 h at $135^{\circ} \mathrm{C}$ in a closed JYoung tube. After cooling to room temperature, methyl tert-butyl ether (200 mL) and aq. sat. KF (100 mL) were added and stirring was continued for 10 min . Water (100 mL) and aq. sat. Na / K-tartrate $(100 \mathrm{~mL})$ were added and the aqueous layer was extracted with methyl tert-butyl ether ($3 \times 150 \mathrm{~mL}$). The combined extracts were dried over MgSO_{4}, the solvent was evaporated, and the crude product was purified by flash chromatography (SiO_{2}, hexanes) to give the title compound as a colorless solid ($1.10 \mathrm{~g}, 60 \%$). $\mathrm{mp}=57-58$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.03(\mathrm{ddt}, \mathrm{J}=17.1,10.1,5.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.86-4.83(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{dq}, \mathrm{J}=$ $17.1,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.42(\mathrm{dt}, J=5.0,1.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.54(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.17 \mathrm{ppm}(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.3,137.9,133.0,114.8,33.0,22.9,15.5 \mathrm{ppm}$; IR (film): $\tilde{v}=3080,3001$, 2962, 2927, 2897, 2869, 1817, 1636, 1485, 1448, 1422, 1403, 1376, 1291, 1227, 1198, 1117, 1059, 995, 927, 905, 823, 769, 629, $555 \mathrm{~cm}^{-1}$; HRMS (EI(DE)): m/z: calcd. for [$\left.\mathrm{C}_{21} \mathrm{H}_{30}\right]$: 282.2345, found: 282.2348.
((Methylsilanetriyl)tris(ethane-2,1-diyl))tris(diphenylsilanol) (8a). Trivinylmethylsilane ($746 \mathrm{mg}, 6.00$
 $\mathrm{mmol})$ was dissolved in toluene (50 mL) in a flame-dried Schlenk flask. After addition of Karstedt's catalyst ($0.3 \mathrm{~mL}, 0.1 \mathrm{M}$ in poly(dimethylsiloxane)) the mixture was heated to $60^{\circ} \mathrm{C}$ and diphenylchlorosilane ($4.05 \mathrm{~g}, 18.5 \mathrm{mmol}$) was added dropwise and stirring continued for 20 h at this temperature. The mixture was then allowed to reach ambient temperature before $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and triethylamine (0.5 mL) were added and the mixture stirred for 20 min ; aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was introduced and stirring continued for another 10 min . The aqueous layer was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$) and the combined organic layers were dried over MgSO_{4}. The crude product was purified by flash chromatography (SiO_{2}, hexanes/ethyl acetate, $4 / 1$ to $3 / 1$). The material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{MS} 3 \AA(2 \mathrm{~g})$ was added. After gentle stirring of the suspension for 2 h at room temperature, the MS was filtered off and the filtrate was evaporated. The product was dried for 4 h in high vacuum to afford the title compound as a colorless hygroscopic solid
(2.43 g, 56\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.54-7.48(\mathrm{~m}, 12 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 18 \mathrm{H}), 0.90-0.79(\mathrm{~m}, 6 \mathrm{H})$, $0.56-0.47(\mathrm{~m}, 6 \mathrm{H}),-0.11 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=138.2,135.3,130.6,128.8,8.2$, 4.7, $-6.4 \mathrm{ppm} ; \operatorname{IR}(f i l m): \tilde{v}=3258,3068,3047,3012,2908,2879,1589,1427,1249,1111,1053,1027$, 997, 818, 695, 664, 636, 499, 479, $445 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for [$\left.\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Si}_{4}+\mathrm{Na}\right]^{+}: 747.2569$, found: 747.2573.
((Phenylsilanetriyl)tris(ethane-2,1-diyl))tris(diphenylsilanol) (8b). Diphenylchlorosilane (3.91 g, 17.9
 mmol) was added dropwise to a solution of phenyltrivinylmethylsilane S1 $(950 \mathrm{mg}, 5.10 \mathrm{mmol})$ and Karstedt's catalyst $(0.4 \mathrm{~mL}, 0.1 \mathrm{M}$ in poly(dimethylsiloxane)) in toluene (20 mL) at $50^{\circ} \mathrm{C}$. The mixture was stirred for 16 h at this temperature before a second portion of Karstedt's catalyst ($0.1 \mathrm{~mL}, 0.1 \mathrm{M}$ in poly(dimethylsiloxane)) was added and stirring continued for another 2 h at $65{ }^{\circ} \mathrm{C}$. The mixture was allowed to reach room temperature before $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and triethylamine $(0.5 \mathrm{~mL})$ were added. After stirring for 20 min , aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}_{\text {aq. }}$ (5 mL) was introduced and stirring continued for 10 min . The water layer was extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$ and the combined extracts were dried over MgSO_{4}. Evaporation of the solvent and flash chromatography of the residue (SiO_{2}, hexanes/ethyl acetate, $4 / 1$ to $2 / 1$) gave the crude product which was dried by stirring of a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ in the presence of $\mathrm{MS} 3 \AA(2 \mathrm{~g})$ for 2 h . The MS was filtered off, the solvent was evaporated and the resulting product dried for 4 h in high vacuum to afford the title compound as a colorless hygroscopic solid ($2.31 \mathrm{~g}, 58 \%$). $\mathrm{mp}=56-60{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.51-7.55(\mathrm{~m}, 12 \mathrm{H}), 7.30-7.42(\mathrm{~m}, 23 \mathrm{H}), 2.38-2.41(\mathrm{~m}, 3 \mathrm{H}), 0.84-1.00 \mathrm{ppm}(\mathrm{m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=136.3,136.0,134.5,134.3,130.0,129.2,128.0,127.9,7.0,2.3 \mathrm{ppm}$; IR (film): $\tilde{v}=$ 3298, 3067, 3046, 2910, 1705, 1589, 1486, 1427, 1304, 1262, 1110, 1049, 997, 828, 694, 665, 643, 501, $471,445 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m / z : calcd. for $\left[\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Si}_{4}+\mathrm{Na}\right]^{+}$: 809.2729, found: 809.2729.
(Benzene-1,3,5-triyltris(propane-3,1-diyl))tris(diphenylsilanol) (11a). Prepared analogously at $50^{\circ} \mathrm{C}$
 reaction temperature from compound 10a as a colorless hygroscopic solid ($756 \mathrm{mg}, 47 \%$). $\mathrm{mp}=57-65{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.52-7.56(\mathrm{~m}, 12 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 18 \mathrm{H}), 6.71(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 6 \mathrm{H}), 2.32-2.38(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.80(\mathrm{~m}, 6 \mathrm{H}), 1.12-1.17 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.1,136.3,134.3,130.0,128.0$, 126.5, 39.3, 24.9, 14.8 ppm ; IR (film): $\tilde{v}=3241,3067,3046,2999$, 2923, 2857, 1590, 1427, 1112, 1067, 1045, 1027, 997, 823, 734, 695, 504, 480, $448 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m / z : calcd. for $\left[\mathrm{C}_{51} \mathrm{H}_{54} \mathrm{O}_{3} \mathrm{Si}_{3}+\mathrm{Na}\right]^{+}$: 821.3274, found: 821.3273.
((2,4,6-Triethylbenzene-1,3,5-triyl)tris(propane-3,1-diyl))tris (diphenylsilanol) (11b). Prepared
 analogously from compound 10 b at $70^{\circ} \mathrm{C}$ reaction temperature; colorless hygroscopic solid ($560 \mathrm{mg}, 0.63 \mathrm{mmol}, 54 \%$). $\mathrm{mp}=66-75^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}), 7.32-7.44(\mathrm{~m}$, $18 \mathrm{H}), 2.50-2.59(\mathrm{~m}, 6 \mathrm{H}), 2.38(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.06-2.13(\mathrm{~m}, 3 \mathrm{H})$, $1.55-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.06 \mathrm{ppm}(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.4,136.4,136.3,134.3,130.0$, 128.1, 33.6, 25.0, 22.6, 16.5, 15.8 ppm; IR (film): $\tilde{v}=3299,3068,3047$,

2958, 2927, 2869, 1589, 1486, 1462, 1427, 1373, 1305, 1262, 1169, 1112, 1066, 1026, 997, 965, 944, 824, 762, 736, 696, 640, 504, 479, $449 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m / z : calcd. for $\left[\mathrm{C}_{57} \mathrm{H}_{66} \mathrm{O}_{3} \mathrm{Si}_{3}+\mathrm{Na}\right]^{+}: 905.4212$, found: 905.4212.

Homo-Metathesis Reactions

Representative Alkyne Metathesis Reaction using the Two-Component Catalyst System. Preparation of

 3,3'-(Ethyn-1,2-diyl)diphenol. MS $5 \AA$ (200 mg) was added to a solution of 3-(prop-1-yn-1-yl)phenol (33.0 $\mathrm{mg}, 0.25 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ and the resulting suspension was stirred at room temperature for 1 h . A freshly prepared solution of the tris-silanol 11b (22.1 mg , $25.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\left[\mathrm{Mo}(\equiv \mathrm{CEt})(\mathrm{NArtBu})_{3}\right](16.6 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$, which had been stirred in toluene (1 mL) for 5 min , was added. The mixture was stirred for 14 h at room temperature before the molecular sieves were filtered off through a pad of Celite ${ }^{\circledR}$, which was rinsed with ethyl acetate (20 mL). The combined filtrates were evaporated and the residue purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc, $4 / 1$ to $2 / 1$) to afford the title compound as a colorless solid (21.0 $\mathrm{mg}, 80 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.17(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{ddd}, J=7.6,1.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90$ (dd, $J=2.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.78 \mathrm{ppm}(\mathrm{ddd}, J=8.0,2.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.5$, 130.6, 125.5, 123.9, 119.0, 116.9, 89.6 ppm; IR (film): $\tilde{v}=3236,3059,2992,2613,1574,1497,1451$, 1322, 1309, 1252, 1182, 1159, 1085, 970, 873, 752, $682 \mathrm{~cm}^{-1}$; HRMS (EI): m/z: calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2}\right]^{+}$: 210.0679, found: 210.0681. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{4}$

The following compounds were prepared analogously:
4,4'-(Ethyn-1,2-diyl)diphenol. Colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=7.35(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.22$
 $(\mathrm{s}, 2 \mathrm{H}), 6.81 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=158.0$, 133.8, 116.5, 115.6, 88.4 ppm; IR (film): $\tilde{v}=3304,1607,1591,1510,1438$, 1371, 1350, 1231, 1171, 1100, $766 \mathrm{~cm}^{-1}$; HRMS (EI): m / z : calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2}\right]^{+}: 210.0680$, found: 210.0681. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{5}$
(2R,17R)-Octadec-9-yn-2,17-diol. Colorless solid; mp: 56-57 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.74-3.82$ $(\mathrm{m}, 2 \mathrm{H}), 2.14(\mathrm{t}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.27-1.51(\mathrm{~m}, 22 \mathrm{H}), 1.18 \mathrm{ppm}(\mathrm{d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=80.4,68.3,39.4,29.3,29.2,28.9,25.9,23.7,18.8 \mathrm{ppm} ;$ IR (film): $\tilde{v}=3325,3243,2960,2940,2849,1496,1466,1373,1354,1294,1127$, 1107, 1046, 1010, 926, 836, 720, $673 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}: 305.2448$, found: 305.2451 .
$\mathbf{N}^{1}, \mathbf{N}^{8}$-Dimethoxy- $\mathbf{N}^{\mathbf{1}}, \mathbf{N}^{8}$-dimethyloct-4-ynediamide. Colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.69(\mathrm{~s}$, $6 \mathrm{H}), 3.18(\mathrm{~s}, 6 \mathrm{H}), 2.59-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.41 \mathrm{ppm}(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
 $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.0,79.6,61.4,32.3,31.7,14.4 \mathrm{ppm}$; IR (film): $\tilde{v}=$ 2937, 2247, 1736, 1656, 1420, 1386, 1336, 1242, 1177, 1107, 1044, 988, 917, 776, 728, 646, 606, 565, 509, 487, $437 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$: 279.1310 , found: 279.1315 .

Hexadec-8-yne-1,16-diol. Colorless solid; mp: 39-40 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.63(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$,

$4 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.29 \mathrm{ppm}(\mathrm{m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 80.4, 63.1, 32.9, 29.1, 29.1, 28.9, 25.8, 18.8 ppm; IR (film): $\tilde{v}=3348,3265,2931$, 2851, 1457, 1423, 1381, 1361, 1297, 1249, 1211, 1133, 1109, 1094, 1055, 1040, 1014, 1005, 970, 896, 815, 756, 725, 650, 548, 478, 452, 432, $416 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}: 277.2140$, found: 277.2138.

Representative Alkyne Metathesis Reaction using $\left[\mathrm{Mo}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)\left(\mathrm{OSiPh}_{3}\right)_{3}\right.$] as the catalyst.
 Preparation of 1,12-Dibromododec-6-yne. MS $5 \AA(1.25 \mathrm{~g})$ were added to a solution of 1-bromo-6-octyne ($250 \mathrm{mg}, 1.32 \mathrm{mmol}$) in toluene (6 mL) and the resulting suspension was gently stirred for 30 min before complex $1(15 \mathrm{mg}, 14.4 \mu \mathrm{~mol}, 1$ $\mathrm{mol} \%$) was added. Stirring was continued for 90 min , and the mixture was filtered through a pad of Celite, which was carefully rinsed with ethyl acetate. The combined filtrates were evaporated and the residue purified by flash chromatography (pentanes) to give the title compound as a colorless oil (212 $\mathrm{mg}, 91 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.41(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.16(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.87(\mathrm{dt}, \mathrm{J}=6.9$, $6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.58-1.45 \mathrm{ppm}(\mathrm{m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=80.2,33.9,32.5,28.3,27.5,18.8 \mathrm{ppm}$; IR (film): $\tilde{v}=3302,2936,2860,2213,1904,1732,1671,1431,1349,1230,1199,1023,732,642 \mathrm{~cm}^{-1}$; HRMS (EI): m / z : calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{Br}_{2}\right]^{+}: 321.9928$, found: 321.9932.

The following compounds were prepared analogously:
1,12-Diazidododec-6-yne. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.27(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}$), 2.19-2.14 $(\mathrm{m}, 4 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.42 \mathrm{ppm}(\mathrm{m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 80.2, 51.5, 28.7, 28.6, 26.1, 18.8 ppm; IR (film): $\tilde{v}=2936,2861,2087,1456,1349$, 1333, 1257, 1097, 1026, 896, 839, 733, 668, 637, $557 \mathrm{~cm}^{-1}$; HRMS (CI(DE), i-butane): m / z : calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{6}\right]^{+}$: 249.1826, found: 249.1828.

1,12-Di(piperidin-1-yl)dodec-6-yne. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.42-2.30(\mathrm{~b}, 8 \mathrm{H})$, $2.30-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.53-1.31 \mathrm{ppm}$ ($\mathrm{m}, 16 \mathrm{H}$); ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=80.3,59.7,54.8,29.3,27.2,26.7,26.2$, 24.7, 18.9 ppm ; IR (film): $\tilde{v}=3392,2931,2856,2799,2762,2517,1655,1442$, 1376, 1350, 1307, 1269, 1153, 1121, 1039, 962, 907, 860, 779, 731, 640, 514 cm^{-1}; HRMS (ESI ${ }^{+}$): m / z : calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}: 333.3264$, found: 333.3264.
$\mathbf{N}^{1}, \mathbf{N}^{12}$-Dibutyldodec-6-yne-1,12-diamine. Colorless solid; $m p=228-230^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.68(\mathrm{~s}, 2 \mathrm{H}), 2.71-2.61(\mathrm{~m}, 8 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.30$ $(\mathrm{m}, 20 \mathrm{H}), 0.91 \mathrm{ppm}(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=80.3$, 49.7, 49.5, 31.5, 28.9, 26.6, 20.6, 18.8, $14.1 \mathrm{ppm} ; \operatorname{IR}($ film $): \tilde{v}=2953,2867$, 2798, 2450, 1442, 1344, 1042, 888, 790, $758 \mathrm{~cm}^{-1}$; HRMS (ESI+): m/z: calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{41} \mathrm{~N}_{2}\right]^{+}: 309.3264$, found: 309.3264.

1,12-Bis(tridecylthio)dodec-6-yne. Colorless solid; $\mathrm{mp}=55-56{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 2.53-2.47 (m, 8H), 2.17-2.12 (m, 4H), 1.64-1.53 (m, 8H), 1.51-1.45 (m, 8H), $1.42-1.21(\mathrm{~m}, 36 \mathrm{H}), 0.88 \mathrm{ppm}(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
80.3, 32.4, 32.2, 32.1, 29.9, 29.82, 29.79, 29.77, 29.71, 29.51, 29.46, 29.44, 29.1, 28.9, 28.3, 22.8, 18.8, 14.3 ppm ; IR (film): $\tilde{v}=2953,2917,2847,1459,1426,1370,1297,1250,1199,1186,1026,813,762,725$, $512 \mathrm{~cm}^{-1}$; HRMS (EI): m/z: calcd. for $\left[\mathrm{C}_{36} \mathrm{H}_{70} \mathrm{~S}_{2}\right]^{+}$: 566.4917, found: 566.4919.

1,12-Bis(tridecylsulfinyl)dodec-6-yne. Colorless solid; mp $=108-110{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 2.73-2.56 (m, 8H), 2.20-2.13 (m, 4H), 1.83-1.68 (m, 8H), 1.61-1.38 (m, 12H),
 $1.36-1.20(\mathrm{~m}, 32 \mathrm{H}), 0.87 \mathrm{ppm}(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 80.2, 52.7, 52.5, 32.0, 29.74, 29.68, 29.51, 29.47, 29.4, 29.1, 28.8, 28.2, 22.82,
22.77, 22.4, 18.7, 14.3 ppm ; IR (film): $\tilde{v}=2912,2848,1466,1081,1015,723$, $463 \mathrm{~cm}^{-1}$; HRMS (ESI+): m / z : calcd. for $\left[\mathrm{C}_{36} \mathrm{H}_{70} \mathrm{NaO}_{2} \mathrm{~S}_{2}\right]^{+}: 621.4711$, found: 621.4709.

1,24-Diiodotetracos-11-yne. Colorless solid; $\mathrm{mp}=54-54.5^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta=3.18(\mathrm{t}, \mathrm{J}=$

$7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.12(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.24$ ppm (m, 28H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=80.4,33.7,30.7,29.7,29.6,29.32$, 29.30, 29.0, 28.7, 18.9, 7.4 ppm ; IR (film): $\tilde{v}=2953,2917,2846,1457,1422,1336$, 1314, 1289, 1259, 1229, 1197, 1163, 1097, 1050, 1035, 982, 802, 724, 602, 527, $456 \mathrm{~cm}^{-1}$; HRMS (EI): m / z : calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{I}_{2}\right]^{+}$: 586.1528, found: 586.1532.

4,4'-(Ethyne-1,2-diyl)dianiline. Orange solid; ${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=7.17(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.65$
 (d, J = 8.3 Hz, 4H), 4.83 ppm (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CD}$): $\delta=149.1$, 133.3, 115.9, 114.0, 88.4 ppm ; IR (film): $\tilde{v}=3418,3371,2594,2525,2490$, 2446, 1604, 1516, 1325, 1274, 1172, 1148, 1107, 822, $521 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$: m / z : calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$: 209.1072, found: 209.1073. The compound is literature known, spectra are reported in different solvents. ${ }^{6}$

Syntheses of the Diyne Model Substrates

Dodecan-1,12-dial (S2). [Cu(MeCN) $\left.)_{4}\right] \mathrm{BF}_{4} \quad(622 \mathrm{mg}, \quad 1.98 \mathrm{mmol}, 0.04$ equiv), 2,2'-bipyridine (309 mg, $1.98 \mathrm{mmol}, 0.04$ equiv), TEMPO ($309 \mathrm{mg}, 1.98 \mathrm{mmol}, 0.04$ equiv) and N-methyl-imidazole ($406 \mathrm{mg}, 4.94 \mathrm{mmol}, 0.1$ equiv) were added sequentially to a solution of dodecan-1,12-diol ($10 \mathrm{~g}, 49.4 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$ in an open flask. The resulting dark red mixture was
vigorously stirred open to air for 72 h , after which time the solution had turned blue. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane ($1: 1,250 \mathrm{~mL}$) and filtered through a plug of silica. Removal of the solvent furnished the title compound as a white solid, which was pure enough for further use ($8.40 \mathrm{~g}, 86 \%$). $\mathrm{mp}=$ $49-51{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.77(\mathrm{t}, 1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{td}, \mathrm{J}=7.3,1.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.63$ (quint, $J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.29 \mathrm{ppm}(b r s, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.1$ (2C), 44.0 (2C), 29.4 (4 C$), 29.2$ (2C), $22.2 \mathrm{ppm}(2 \mathrm{C})$; IR (film): $\tilde{v}=2924,2853,1721,1464,1391,723,521 \mathrm{~cm}^{-1}$; HRMS (CI): m / z : calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{2}\right]^{+}: 199.1698$, found: 199.1696. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{7}$

Octadeca-2,16-diyne-4,15-diol (S3). A solution of 1-propynylmagnesium bromide (0.5 m in THF, 41.9 mL , $20.9 \mathrm{mmol})$ was added to a solution of dial $\mathbf{S 2}(1.66 \mathrm{~g}, 8.37 \mathrm{mmol})$ in THF (15 mL) and the resulting mixture was stirred at ambient temperature for 5 h . The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and the aqueous layer extracted with methyl tert-butyl ether ($3 \times 30 \mathrm{~mL}$). The combined extracts were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/methyl tert-butyl ether 6:1 to $3: 1$) to afford the title compound as a white solid ($2.10 \mathrm{~g}, 90 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=4.25(\mathrm{tq}, J=6.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.65$ (quint, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H}$), $1.22 \mathrm{ppm}(\mathrm{brs}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=81.1$ (2C), 80.6 (2C), 62.9 (2C), 38.3 (2C), 29.7 (4C), $29.4(2 \mathrm{C}), 25.3(2 \mathrm{C}), 3.7 \mathrm{ppm}(2 \mathrm{C})$; IR (film): $\tilde{\mathrm{v}}=3364,2923,2854,1453,1023 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}: 301.2138$, found: 301.2138.

Silyl ethers S4 and S5. Imidazole ($91.7 \mathrm{mg}, 1.35 \mathrm{mmol}$) and DMAP ($11.0 \mathrm{mg}, 0.09 \mathrm{mmol}, 0.1$ equiv) were
 added to a solution of diol $\mathbf{S 3}(250 \mathrm{mg}, 0.90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, followed by TESCl ($0.15 \mathrm{~mL}, 0.90 \mathrm{mmol}$). The resulting mixture was stirred at ambient temperature for 16 h . The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane) to afford the mono-silyl ether S4 ($150 \mathrm{mg}, 0.38 \mathrm{mmol}, 43 \%$) and the bis-silyl ether $\mathbf{S 5}$ ($97.3 \mathrm{mg}, 0.19 \mathrm{mmol}, 21 \%$) as colorless oil each. Analytical data for S4: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.35-4.26(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~J}=$ $2.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.82(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{brs}, 12 \mathrm{H}), 0.97(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.64 \mathrm{ppm}(\mathrm{qd}, J=7.9,3.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=81.2,81.1,80.6,79.9$, 63.1, 62.9, 39.2, 38.3, 29.7 (4C), 29.5, 29.4, 25.4, 25.3, 7.0 (3C), 4.9 (3C), $3.7 \mathrm{ppm}(2 C)$ IR (film): $\tilde{v}=3360$, 2921, 2854, 1459, 1238, 1078, 1004, $726 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}$: 415.3003, found: 415.3002.

Analytical data for S5: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.29(\mathrm{tq}, \mathrm{J}=6.5,2.1 \mathrm{~Hz}, 2 \mathrm{H})$,
 $1.82(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.26(b r s, 12 \mathrm{H}), 0.97(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 18 \mathrm{H}), 0.64 \mathrm{ppm}(q d, J=7.9,3.5 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 81.2 (2C), 79.9 (2C), 63.1 (2C), 39.2 (2C), 29.7 (4C), 29.5 (2C), 25.4 (2C), 7.0 (6 C$), 4.9$ (6C), 3.7 ppm (2C); IR (film): $\tilde{v}=2922,2876,2855,1460,1340,1239,1084,1005,743 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m / z : calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{Si}_{2}+\mathrm{Na}\right]^{+}: 529.3868$, found: 529.3874 .

Methoxymethyl ethers $\mathbf{S 6}$ and $\mathbf{S 7}$. Hünig's base ($0.17 \mathrm{~mL}, 1.0 \mathrm{mmol}$) and DMAP ($11.0 \mathrm{mg}, 0.09 \mathrm{mmol}$,
 0.1 equiv) were added to a solution of diol $\mathbf{S 3}(250 \mathrm{mg}, 0.90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, followed by MOMCI $(68.2 \mu \mathrm{~L}, 0.90 \mathrm{mmol})$. The resulting mixture was stirred at ambient temperature for 16 h . The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ $(8 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/methyl tert-butyl ether 9:1) to afford the mono-MOM derivative $\mathbf{S 6}$ ($119 \mathrm{mg}, 41 \%$) and the bis-MOM protected compound $\mathbf{S 7}$ ($44.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 14 \%$) as colorless oil each. Analytical data for S6: ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=4.94(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dtq}, J=17.3,6.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, $1.84(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.27 \mathrm{ppm}(b r s, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=93.9,81.6,81.0,80.7,78.0,66.0,62.9,55.7,38.3,36.1,29.7(4 \mathrm{C}), 29.5,29.4,25.5,25.3,3.71$, 3.69 ppm ; IR (film): $\tilde{v}=3457,2922,2854,1465,1343,1148,1097,1033,921,723 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m / z : calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}: 345.2400$, found: 345.2403.

Analytical data for S7: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.95(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{tq}, J=6.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 6 \mathrm{H}), 1.84(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.74-$ $1.62(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{brs}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=94.0$ (2C), 81.7 (2C), 78.0 (2C), 66.0 (2C), 55.7 (2C), 36.2 (2C), 29.71 (2C), 29.69 (2C), 29.5 (2C), 25.5 (2C), $3.7 \mathrm{ppm}(2 \mathrm{C})$; IR (film): $\tilde{v}=2923,2854,1466,1344,1148,1097,1034,920 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4}+\mathrm{Na}\right]^{\dagger}: 389.2662$, found: 389.2660 .

12,12-Dimethoxydodecanal (S8). p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(288 \mathrm{mg}, 1.51 \mathrm{mmol}, 0.1$ equiv) was added to a solution of
 dodecan-1,12-dial (S2) ($3.00 \mathrm{~g}, 15.1 \mathrm{mmol}$) and $\mathrm{MeOH}(1.29 \mathrm{~mL}, 31.8 \mathrm{mmol})$ in toluene $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 1 h before it was poured into aq. sat. NaHCO_{3} $(60 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 60 \mathrm{~mL})$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/EtOAc 40:1) to furnish the title compound as a colorless oil ($2.01 \mathrm{~g}, 54 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.75(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 6 \mathrm{H}), 2.41(\mathrm{td}, \mathrm{J}=7.3$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.26 \mathrm{ppm}(\mathrm{brs}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.1,104.7,52.7$
(2C), 44.1, 32.6, 29.7, 29.6, 29.5, 29.4, 29.28, 29.26, 24.7, 22.2 ppm; IR (film): $\tilde{v}=2925,2854,1726,1464$, 1387, 1191, 1128, 1055, 953, $723 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m / z : calcd. for [$\left.\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$: 267.1931, found: 267.1931. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{8}$

14,14-Dimethoxytetradec-1-en-3-ol (S9). A solution of vinylmagnesium bromide (1.0 M in THF, 6.87 mL ,
 $6.87 \mathrm{mmol})$ was added to a solution of aldehyde $\mathbf{S 8}(1.40 \mathrm{~g}, 5.73 \mathrm{mmol})$ in THF (50 mL). The resulting mixture was stirred at ambient temperature for 1 h . The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and the aqueous layer was extracted with methyl tert-butyl ether ($3 \times 25 \mathrm{~mL}$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/methyl tert-butyl ether 12:1 to 3:1) to afford the title compound as a colorless oil ($1.03 \mathrm{~g}, 66 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.86$ (ddd, J=16.9, $10.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dt}, J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dt}, J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ $(q, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 6 \mathrm{H}), 1.70(\mathrm{brs}, 1 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.26 \mathrm{ppm}(\mathrm{brs}, 16 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=141.5,114.6,104.7,73.4,52.7(2 \mathrm{C}), 37.2,32.6,29.7$ (4C), 29.64, 29.59, 25.5, $24.7 \mathrm{ppm} ; \operatorname{IR}$ (film): $\tilde{v}=3445,2925,2854,1464,1386,1192,1126,1054,991,919 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(E S I(p o s)): m / z:$ calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}: 295.2244$, found: 295.2243. The analytical and spectroscopic data are in agreement with those reported in the literature. ${ }^{8}$

Silyl ether S10. Imidazole ($250 \mathrm{mg}, 3.67 \mathrm{mmol}$), DMAP ($22.4 \mathrm{mg}, 0.18 \mathrm{mmol}, 0.1$ equiv) and TBSCl $(415 \mathrm{mg}, 2.75 \mathrm{mmol})$ were successively added to a solution of alcohol $\mathbf{S 9}$ (500 mg ,
 $1.84 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to ambient temperature and stirred for 16 h . The reaction was quenched with aq. sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/methyl tert-butyl ether $50: 1$) to afford the title compound as a colorless oil ($653 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.79$ (ddd, $J=17.1,10.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.12 (ddd, $J=17.1$, $1.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{ddd}, J=10.4,1.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dtt}, J=7.2,6.0,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31(\mathrm{~s}, 6 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{brs}, 16 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$, $0.03 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.1,113.5,104.7,74.0,52.7$ (2C), 38.3, 32.6, 29.77, 29.75, 29.72, 29.70, 29.69, 29.6, 26.0 (3C), 25.4, 24.8, 18.4, -4.2, -4.7 ppm ; IR (film): $\tilde{v}=2926,2855$, 1463, 1361, 1252, 1126, 1076, 920, 835, $775 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}\right]^{+}$: 409.3108, found: 409.3108.

Aldehyde S11. Silyl ether S10 ($650 \mathrm{mg}, 1.68 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ and cooled

to $-78^{\circ} \mathrm{C}$. Ozone was bubbled through the solution until the blue color persisted (ca. 30 $\mathrm{min})$. After purging the mixture with O_{2} and $\mathrm{Ar}, \mathrm{PPh}_{3}(573 \mathrm{mg}, 2.19 \mathrm{mmol})$ was added in one portion, the cooling bath was removed and the colorless solution stirred at ambient temperature for 6 h . The mixture was concentrated and the residue purified by flash chromatography (hexane/methyl tert-butyl ether $40: 1$ to $20: 1$) to yield the title aldehyde as a colorless oil ($582 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.59(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.35(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (ddd, $J=7.1,5.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 6 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{brs}, 16 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$, $0.07 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=204.7,104.7,77.8,52.7$ (2C), 32.8, 32.6, 29.7, 29.64 (2C), 29.62, 29.58, 29.55, 25.9 (3C), 24.7 (2C), 18.4, $-4.5,-4.8 \mathrm{ppm} ; \operatorname{IR}($ film $): \tilde{v}=2927,2855,1736,1464$,

1362, 1253, 1123, 1076, 838, $778 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}+\mathrm{Na}\right]^{+}$: 411.2901, found: 411.2903.

Enyne S12. n-BuLi (1.6 M in hexane, $1.37 \mathrm{~mL}, 2.20 \mathrm{mmol}$) was added to a solution of 2-
 butynyltriphenylphosphonium bromide ($869 \mathrm{mg}, 2.20 \mathrm{mmol}$) in THF (10 mL) at $0^{\circ} \mathrm{C}$. The resulting orange mixture was stirred at ambient temperature for 30 min before it was cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of aldehyde $\mathbf{S 1 1}(428 \mathrm{mg}, 1.10 \mathrm{mmol})$ in THF (2 mL) was added and the resulting mixture stirred for 12 h at ambient temperature. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{EtOAc}(3 \times 15 \mathrm{~mL})$. The combined extracts were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/methyl tert-butyl ether 100:0 to 50:1) to afford an inseparable 1.7:1 mixture of (E) - and (Z)-enyne $\mathbf{S 1 2}(279 \mathrm{mg}, 60 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): (E)-enyne: $\delta=6.01$ (ddd, $J=15.8,5.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.58 (dqd, $J=15.8,2.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.36(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{tdd}, J=6.3,5.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 6 \mathrm{H}), 1.94(\mathrm{~d}, J=2.3 \mathrm{~Hz} .3 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 2 \mathrm{H})$, 1.49-1.42 (m, 2H), $1.25(b r s, 16 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$; (Z)-enyne: $\delta=5.73$ (ddd, $J=10.7,8.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.38 (dqd, $J=10.7,2.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dtd}, J=8.7,6.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 6 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz} .3 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.25$ (brs, 16H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (E)-enyne: $\delta=145.4,109.0,104.7$, 86.0, 78.1, 72.8, 52.7 (2C), 38.1, 32.6, 29.8, 29.72 (2C), 29.70, 29.69, 29.6, 26.0 (3C), 25.2, 24.8, 18.4, 4.5, $-4.3,-4.7 \mathrm{ppm} ;(Z)$-enyne: $\delta=145.7,108.6,104.7,90.7,76.2,70.8,52.7$ (2C), 37.8, 32.6, 29.8, 29.72 (2C), 29.70, 29.69, 29.6, 26.1 (3C), 25.3, 24.8, 18.4, 4.5, $-4.2,-4.8 \mathrm{ppm}$; IR (film): $\tilde{v}=2926,2855,1463,1361$, 1253, 1126, 1074, 836, $776 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m / z : calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}\right]^{+}: 447.3265$, found: 447.3269.

Enynes S13 and S14. Pyridinium p-toluenesulfonate ($40.5 \mathrm{mg}, 0.16 \mathrm{mmol}, 0.3$ equiv) was added to a solution of $E, Z-\mathrm{S} 12(228 \mathrm{mg}, 0.54 \mathrm{mmol})$ in acetone $(50 \mathrm{~mL})$ and water (1.4 mL), and the resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 4 h . After cooling to ambient temperature, the mixture was concentrated, the residue partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to furnish the crude aldehyde, which was used in the next step without further purification.

A solution of 1-propynylmagnesium bromide in THF ($0.5 \mathrm{M}, 1.62 \mathrm{~mL}, 0.81 \mathrm{mmol}$) was added to a solution of the crude aldehyde in THF (5 mL) and the resulting reaction mixture stirred at ambient temperature for 4 h . The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the aqueous layer was extracted with methyl tert-butyl ether ($3 \times 10 \mathrm{~mL}$). The combined extracts were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane/EtOAc $15: 1)$ to afford a mixture of (E) - and (Z)-enynes $\mathbf{S 1 3}$ and $\mathbf{S 1 4}$. The diastereoisomers were separated by preparative HPLC (Kromasil C18, $5 \mu \mathrm{~m}, 150 \times 30 \mathrm{~mm}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=95: 5,35^{\circ} \mathrm{C}, 25 \mathrm{bar}, 35 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}(E)=$ $\left.11.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}(Z)=13.4 \mathrm{~min}\right)$ to yield (E)-enyne $\mathbf{S} 13(87.9 \mathrm{mg}, 38 \%$ over two steps) and (Z)-enyne $\mathbf{S 1 4}$ ($50.2 \mathrm{mg}, 23 \%$ over two steps) as a yellow oil each.
(E)-enyne S13: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.00$ (ddd, $\left.J=15.8,5.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.57$ (dqd, $J=15.8,2.3$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{tq}, J=6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{tdd}, J=6.3,5.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=2.3 \mathrm{~Hz} .3 \mathrm{H}), 1.84$ ($\mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz} .3 \mathrm{H}$), 1.69-1.59 (m, 2H), 1.49-1.36 (m, 4H), $1.24($ brs, 14 H$), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$, $0.02 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=145.4,109.0,86.0,81.0,80.7,78.1,72.8,62.9,38.3$, 38.1, 29.74, 29.70 (2C), 29.67 (2C), 29.4, $26.0(3 C), 25.3,25.1,18.4,4.4,3.7,-4.3,-4.7 \mathrm{ppm}$; IR (film): $\tilde{v}=3361,2925,2854,1463,1361,1254,1085,955,835,775 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(E S I(p o s)): m / z:$ calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}: 441.3159$, found: 441.3159 .
(Z)-enyne S14: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.73$ (dd, $J=10.6,8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.38 (dqd, $J=10.8,2.4$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dtd}, J=8.9,7.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{tq}, J=6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=2.4 \mathrm{~Hz} .3 \mathrm{H}), 1.84$ ($\mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz} .3 \mathrm{H}$), 1.69-1.60 (m, 2H), 1.47-1.36 (m, 4H), 1.27 (brs, 14H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$, $0.04 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=145.7,108.7,90.7,81.0,80.7,76.2,70.8,62.9,38.3$, $37.8,29.77,29.75,29.72,29.71,29.70,29.5,26.1$ (3C), 25.4, 25.3, 18.3, 4.5, 3.7, $-4.2,-4.8 \mathrm{ppm}$.

RCAM Reactions

Representative Procedure for Ring Closing Alkyne Metathesis Reactions using the Two-Component Catalyst System. Preparation of 3,14-Bis(methoxymethoxy)cyclotetradec-1-yne. MS 5Å (200 mg) was added to a solution of diyne $\mathbf{S 7}(36.7 \mathrm{mg}, 100 \mu \mathrm{~mol})$ in toluene (50 mL) at room temperature for 1 h . The mixture was then heated to $110^{\circ} \mathrm{C}$ before a freshly prepared solution of trisilanol
 11b (19.4 mg, $22.0 \mu \mathrm{~mol}, 22 \mathrm{~mol} \%$) and complex 3 ($13.3 \mathrm{mg}, 20 \mathrm{~mol} \%$) in toluene (1 mL)was added, which had been stirred for 5 min prior to use. Stirring was continued at $110{ }^{\circ} \mathrm{C}$ for 0.5 h . The mixture was cooled to ambient temperature, the molecular sieves were filtered off through a pad of Celite, which was carefully rinsed with EtOAc, and the combined filtrates were evaporated. Purification of the residue by flash chromatography (SiO_{2}, hexanes/EtOAc, 20/1 to 4/1) afforded the title compound as colorless oil (22 mg , 70%, mixture of diastereomers). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.91$ (dd, $J=6.8,3.4 \mathrm{~Hz}, 2 \mathrm{H}$), $4.59(\mathrm{dd}, \mathrm{J}=$ $6.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.49-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 6 \mathrm{H}), 1.81-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.21 \mathrm{ppm}(\mathrm{m}, 16 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=94.3,84.8,84.6,66.3,66.2,55.7,35.1,34.9,26.6,26.5,25.9,25.8,23.82,23.79$, 22.44, 22.38 ppm; IR (film): $\tilde{v}=2929,2860,2822,2776,1459,1400,1338,1213,1148,1097,1026,919$, $848,792,724,704,554,441,415 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for [$\left.\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}: 355.2189$, found: 335.2193.

The following compounds were prepared analogously:
4-(Methoxymethoxy)cyclotetradec-2-yn-1-ol. Colorless oil (18 mg, 67\%, mixture of diastereomers). ${ }^{1} \mathrm{H}$
 NMR (400 MHz, CDCl ${ }_{3}$) $\delta=4.92$ (dd, $\left.J=6.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.60(\mathrm{dd}, J=6.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.56-4.40 (m, 2H), $3.38(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.22 \mathrm{ppm}$ $(\mathrm{m}, 16 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=94.3,87.11,87.06,84.1,83.9,66.3,66.1$, 63.0, 55.8, 37.2, 37.1, 35.0, 34.9, 26.6, 26.50, 25.9, 25.81, 25.77, 25.7, 23.9, 23.8,
22.5, 22.4, 22.32, 22.30 ppm ; IR (film): $\tilde{v}=3400,2928,2859,1459,1429,1338,1260,1213,1150,1097$, 1026, 918, 865, 801, 731, 700, $509 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}: 291.1928$, found: 291.1931.

3,14-Bis((triethylsilyl)oxy)cyclotetradec-1-yne. Colorless oil ($32 \mathrm{mg}, 71 \%$, mixture of diastereomers). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta=4.51-4.39(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.21(\mathrm{~m}, 20 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$, $18 \mathrm{H}), 0.71-0.56 \mathrm{ppm}(\mathrm{m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=85.9,85.6,63.4,63.2$, 38.7, 38.4, 26.7, 26.4, 26.1, 25.8, 24.0, 23.8, 22.4, 22.3, 7.0, 4.94, $4.88 \mathrm{ppm} ; \operatorname{IR}$ (film): $\tilde{v}=2949,2935,2875,1732,1459,1414,1378,1348,1334,1260,1239,1074$, 1006, $975,843,803,726,675,533,458 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{Si}_{2}+\mathrm{Na}^{+}\right.$: 475.3404, found: 475.3398.

4-((Triethylsilyl)oxy)cyclotetradec-2-yn-1-ol. Colorless oil ($21.8 \mathrm{mg}, 64 \%$, mixture of diastereomers). ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=4.53-4.41(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.25(\mathrm{~m}, 16 \mathrm{H})$, $0.98(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.70-0.59 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=87.1$, 86.9, 85.4, 85.1, 63.3, 63.2, 63.1, 63.0, 38.4, 38.3, 37.2, 26.60, 26.56, 26.53, 26.47, 25.84, 25.82, 25.78, 25.7, 23.89, 23.85, 23.8, 22.4, 22.3, 7.0, 4.92, 4.90 ppm ; IR (fim): \tilde{v} = 3359, 2931, 2874, 2859, 1458, 1413, 1378, 1334, 1259, 1239, 1151, 1072, 1006, 802, 726, 549, 427 cm ${ }^{1}$; HRMS (ESI(pos)): m/z: calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}: 361.2521$, found: 361.2533.

Cyclotetradec-2-yne-1,4-diol. Colorless solid (11.8 mg, 53\%, mixture of diastereomers). $\mathrm{mp}=110-111$
 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.58-4.44(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.62(\mathrm{~m}$, $4 \mathrm{H}), 1.52-1.26 \mathrm{ppm}(\mathrm{m}, 16 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=86.5,86.2,63.04,62.96$, 37.2, 37.1, 26.53, 26.50, 25.74, 25.71, 23.8, 22.4, 22.3 ppm ; IR (film): $\tilde{v}=3273,2923$, $2856,1729,1457,1443,1341,1297,1146,1107,1020,945,723,702,590,533,512,440$ cm^{-1}; HRMS (ESI(pos)): m / z : calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}: 247.1667$, found: 247.1668.

Macrocycle S15. Colorless oil (19.8 mg, 76\%, syn/anti-mixture). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.15$ (dd,
 $J=15.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.62(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.48(\mathrm{~m}, 2 \mathrm{H})$, 4.28-4.23 (m, 2H), 1.84-1.65 (m, 8H), 1.48-1.38 (m, 8H), 1.35-1.19 (m, 24H), $0.89(\mathrm{~s}$, $18 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.03 \mathrm{ppm}(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.1,147.8,108.1$, 108.0, $90.59,90.55,84.53,84.45,72.33,72.27,63.43,63.37,37.3,37.2,36.1(2 \mathrm{C}), 28.41$, 28.38, 27.9 (4C), 27.8 (2C), 27.62 (2C), 27.57, 27.5, 26.0 (6C), 23.7, 23.5, 21.92, 21.86, 18.4 (2C), -4.6 (2C), -4.8 (2C) ppm; IR (film): $\tilde{v}=3348,2926,2855,1462,1361,1255,1073,956,836$, $776 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m / z : calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}: 387.2690$, found: 387.2691.

Macrocycle S16. Colorless oil ($22.3 \mathrm{mg}, 90 \%$); the diastereomers could be separated by flash
 chromatography on silica gel (hexane/methyl tert-butyl ether 20:1). Faster eluting diastereomer: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.84$ (dd, $J=10.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.48 (ddd, $J=10.8,2.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{td}, J=8.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{ddd}, J=7.8,5.1,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.79-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{brs}, 1 \mathrm{H}), 1.44-1.28(\mathrm{~m}, 18 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06 \mathrm{ppm}$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=147.6,107.7,95.2,81.5,71.2,63.6,37.9,36.9,27.1$ (2C), 26.9, 26.7, 26.1 (3C), 25.63, 25.60, 23.74, 23.71, 18.4, $-4.1,-4.6 \mathrm{ppm}$; slower eluting diastereomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.82(\mathrm{dd}, J=10.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.52(\mathrm{~m}, 2 \mathrm{H})$,
$1.89-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.28(\mathrm{~m}, 17 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.04 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta=147.1,107.7,95.0,81.8,71.2,63.2,37.7,36.7,27.3,27.1,26.72,26.71,26.1,26.0$ (3C), 25.7, 23.8, 23.7, 18.3, -4.1, -4.7 ppm ; IR (film): $\tilde{v}=3432,2927,2856,1461,1361,1071,1018,907,835,776$, $732 \mathrm{~cm}^{-1}$; HRMS (ESI(pos)): m/z: calcd. for [$\left.\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}: 387.2690$, found: 387.2692.

Total Synthesis of (\pm)-Manshurolide

Vinyl lodide 14. ${ }^{9} \mathrm{AlMe}_{3}$ (2.0 M in hexane, $46.4 \mathrm{~mL}, 92.9 \mathrm{mmol}$) was slowly added to a solution of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ $(1.93 \mathrm{~g}, 6.59 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(130 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$. The mixture was stirred for 10 min , 1 before $\mathrm{H}_{2} \mathrm{O}(0.85 \mathrm{~mL}, 47 \mathrm{mmol})$ was carefully added. After stirring for additional 10 min at $-25^{\circ} \mathrm{C}$, the solution was warmed to $0^{\circ} \mathrm{C}$ and a solution of 3-butyn-1-ol ($2.27 \mathrm{~mL}, 30.0 \mathrm{mmol}$) and AlMe_{3} $(4.49 \mathrm{~mL}, 8.99 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was introduced. The mixture was stirred for 15 h at ambient temperature before it was cooled to $-25^{\circ} \mathrm{C}$ and a solution of $\mathrm{I}_{2}(11.4 \mathrm{~g}, 44.9 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added. After stirring for 2 h at ambient temperature, sat. aq. Rochelle salt solution was added causing the formation of a white precipitate. The solid was filtered off, the aqueous phase was extracted with tert-butyl methyl ether ($3 \times 40 \mathrm{~mL}$), the combined extracts were washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (SiO_{2}, pentane/tert-butyl methyl ether, $5 / 1$) to give the title compound (admixed with remaining starting material) ($4.13 \mathrm{~g}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.01(1 \mathrm{H}, \mathrm{tq}, J=1.1,1.1 \mathrm{~Hz}$), $3.71(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}$), $2.47(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=6.3,1.1 \mathrm{~Hz}), 1.86 \mathrm{ppm}(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=144.6,77.1,60.2$, 42.5, 24.2 ppm ; IR (film): $\tilde{v}=3317,2936,2910,2882,1430,1376,1271,1177,1038,1000,948,858,764$, 665, 558, 544, 462, $436 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%) 212 (25), 182 (5), 181 (10), 127 (5), 85 (100), 67 (36), 57 (18), 55 (42), 54 (25), 53 (36); HRMS (EI): m / z : calcd. for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OI}\left[M^{+}\right]: 211.9698$, found 211.9700.

Diiodide 17. A solution of vinyl iodide 14 ($950 \mathrm{mg}, 4.48 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}(45 \mathrm{~mL}, 2 / 1)$ was treated with $\mathrm{PPh}_{3}(1.41 \mathrm{~g}, 5.38 \mathrm{mmol})$, imidazole ($366 \mathrm{mg}, 5.38 \mathrm{mmol}$) and $\mathrm{I}_{2}(1.40 \mathrm{~g}, 5.52 \mathrm{mmol})$. The mixture was warmed to ambient temperature and stirred for 1 h . Pentane (40 mL) was added, the precipitate was filtered off, and the residue was washed with pentane $/ \mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL}, 30 / 1)$. The combined filtrates were concentrated and the residue purified by flash chromatography (SiO_{2}, pentane/tert-butyl methyl ether, 50/1) to yield diiodide 17 as a colorless oil $(1.04 \mathrm{~g}, 72 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.07(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}), 3.23(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.76(\mathrm{td}, 2 \mathrm{H}$, $J=7.5,1.1 \mathrm{~Hz}$), $1.85 \mathrm{ppm}(\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=146.1,78.0,43.4,23.2$, 2.6 ppm; IR (film): $\tilde{v}=3052,2960,2908,1477,1422,1375,1324,1303,1277,1253,1233,1171,1139$, 1120, 1105, 897, 853, 834, 769, 754, 743, 696, 666, 610, 496, $478 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%) 322 (19), 209 (5), 196 (6), 195 (100), 167 (5), 155 (5), 127 (10), 81 (5), 68 (58), 67 (55), 53 (14); HRMS (EI): m/z: calcd. for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{l}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 321.8715$, found 321.8712 .

Iodide 18. A solution of 3-pentyn-1-ol ($2.50 \mathrm{~g}, 29.7 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}(300 \mathrm{~mL}, 2 / 1)$ was treated with $\mathrm{PPh}_{3}(9.51 \mathrm{~g}, 36.3 \mathrm{mmol})$, imidazole ($2.47 \mathrm{~g}, 36.3 \mathrm{mmol}$) and $\mathrm{I}_{2}(9.20 \mathrm{~g}, 36.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$.
 The mixture was stirred for 1 h at ambient temperature. Pentane (70 mL) was added, the resulting suspension was filtered, the filter cake washed with pentane/ $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL}, 30 / 1)$, and the combined filtrates were carefully evaporated. The crude material was purified by flash chromatography
(SiO_{2}, pentane/ $\mathrm{Et}_{2} \mathrm{O}, 50 / 1$) to give the highly volatile title compound as a colorless oil ($3.44 \mathrm{~g}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.19(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}$), $2.71(\mathrm{tq}, 2 \mathrm{H}, J=7.4,2.3 \mathrm{~Hz}), 1.77 \mathrm{ppm}(\mathrm{t}, 3 \mathrm{H}$, $J=2.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=78.0,77.9,24.3,3.7,2.8 \mathrm{ppm}$; IR (film): $\tilde{v}=2916,1434,1333$, $1248,1170,1151,1028,904,840,728,595,485 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%) 194 (7), 141 (1), 127 (6), 67 (100), 66 (6), 65 (13), 63 (3), 51 (3); HRMS (EI): m / z : calcd. for $\mathrm{C}_{5} \mathrm{H}_{7}$ [[$\left.M^{+}\right]$: 193.9592, found 193.9593.
lodide 19. t-BuLi (1.7 M in pentane, $3.87 \mathrm{~mL}, 6.59 \mathrm{mmol}$,) was added dropwise to a solution of iodide 18 $(1.21 \mathrm{~g}, 6.21 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(6.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for further 30 min at this temperature, a solution of ZnBr_{2} in $\mathrm{THF}(0.5 \mathrm{M}, 12.4 \mathrm{~mL}, 6.21 \mathrm{mmol}$,) was introduced. The mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirring continued for 40 min . In a second flask, a solution of alkenyl iodide $17(1.00 \mathrm{~g}, 3.11 \mathrm{mmol})$ in THF (6.0 mL) was treated with $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(101 \mathrm{mg}, 2 \mathrm{~mol} \%)$ at ambient temperature before the solution of the organozinc reagent was added. After stirring for 4.5 h , the reaction was quenched at $0^{\circ} \mathrm{C}$ with $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$, the aqueous phase was extracted with tert-butyl methyl ether ($4 \times 8 \mathrm{~mL}$), and the extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/toluene, 15/1) to yield the title compound as a colorless oil ($652 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=5.27-5.23(1 \mathrm{H}, \mathrm{m}), 3.22(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 2.54(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 2.19-2.15(4 \mathrm{H}, \mathrm{m}), 1.78$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}), 1.62 \mathrm{ppm}(3 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.9,126.1,79.0,75.8,43.9,27.9$, 19.1, 15.6, 5.0, 3.7 ppm; IR (film): $\tilde{v}=2962,2915,2854,1433,1384,1329,1304,1243,1169,1131,1013$, 903, 845, 734, 621, 552, 497, $474 \mathrm{~cm}^{-1}$; GC-MS: $\mathrm{t}_{R}\left(70 _20\right)=11.3 \mathrm{~min} ; \mathrm{MS}$ (EI) m/z (\%): 262 (4), 234 (11), 209 (15), 167 (13), 135 (14), 107 (65), 93 (82), 81 (100), 67 (44 (55 (49); HRMS (EI): m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{15}$ I [M^{+}]: 262.0218, found 262.0216 .

Compound 15. A solution of Dess-Martin periodinane ($7.70 \mathrm{~g}, 18.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(57 \mathrm{~mL})$ was added to a solution of alcohol $14(3.50 \mathrm{~g}, 16.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1.5 h at ambient temperature before it was diluted with $\mathrm{Et}_{2} \mathrm{O}(175 \mathrm{~mL})$ and poured into a mixture of sat. aq. $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}(1: 1,130 \mathrm{~mL})$. The biphasic mixture was vigorously stirred for 10 min before the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 175 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated. The crude aldehyde was very volatile and used to the next step without further purification ($3.12 \mathrm{~g}, 90 \%$).

1-Propynylmagnesium bromide (0.5 M in THF, $60.9 \mathrm{~mL}, 30.5 \mathrm{mmol}$) was added to a solution of the crude aldehyde ($3.12 \mathrm{~g}, 14.9 \mathrm{mmol}$) in THF (70 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 16 h at ambient temperature. For work up, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added at $0^{\circ} \mathrm{C}$, the aqueous phase was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by flash chromatography (SiO_{2}, hexanes/EtOAc, 8/1) to give the title compound as a colorless oil ($3.32 \mathrm{~g}, 82 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.08(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=1.1 \mathrm{~Hz}), 4.48-4.43(1 \mathrm{H}, \mathrm{m}), 2.59$ $-2.56(2 \mathrm{H}, \mathrm{m}), 1.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz}), 1.84(3 \mathrm{H}, \mathrm{d} ; \mathrm{J}=2.2 \mathrm{~Hz}), 1.82 \mathrm{ppm}(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=143.6,82.1,79.5,78.6,60.7,47.7,24.4,3.7 \mathrm{ppm}$; IR (film): $\tilde{v}=3353,2916,2852,2230,1663$, 1617, 1434, 1376, 1339, 1274, 1141, 1041, 1010, 978, 762, 669, $522 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%) 250 (1), 183 (3), 182 (67), 127 (2), 124 (2), 123 (21), 105 (12), 95 (18), 79 (4), 70 (4), 69 (100), 55 (23), 53 (15); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{OINa}\left[M+\mathrm{Na}^{+}\right]$: 272.9747, found 272.9746.

Compound 16. Imidazole ($726 \mathrm{mg}, 10.7 \mathrm{mmol}$) and TBSCI ($842 \mathrm{mg}, 5.59 \mathrm{mmol}$) were added to a solution of alcohol $15(1.27 \mathrm{~g}, 5.08 \mathrm{mmol})$ in DMF $(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ before tert-butyl methyl ether (60 mL) was added. The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ ($3 \times 40 \mathrm{~mL}$) and brine, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by flash chromatography (SiO_{2}, hexanes/tert-butyl methyl ether, 40/1) to afford the title compound as a colorless oil ($1.61 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.00$ $-5.98(1 \mathrm{H}, \mathrm{m}), 4.39(1 \mathrm{H}, \mathrm{qt}, J=9.0,2.1 \mathrm{~Hz}), 2.58(2 \mathrm{H}, \mathrm{qdd}, J=13.5,9.0,0.9 \mathrm{~Hz}), 1.86(3 \mathrm{H}, \mathrm{d}$, $J=1.1 \mathrm{~Hz}), 1.81(3 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.10(3 \mathrm{H}, \mathrm{s}), 0.07 \mathrm{ppm}(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=143.9,81.0,80.3,78.4,61.6,48.6,25.9$ (3C), 24.5, 18.3, 3.7, $-4.5,-5.0 \mathrm{ppm}$; IR (film): $\tilde{v}=2954,2928$, 2895, 2856, 1471, 1462, 1436, 1389, 1361, 1342, 1277, 1251, 1142, 1078, 1005, 933, 829, 812, 775, 670, $531 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%) 349 (1), 307 (40), 239 (2), 211 (2), 185 (16), 184 (16), 183 (100), 180 (53), 179 (20), 165 (19), 140 (6), 127 (13), 115 (11), 111 (21), 105 (16), 97 (77), $91(15), 83$ (9), 77 (10), 75 (53), 73 (76), 57 (22); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{OISiNa}\left[M+\mathrm{Na}^{+}\right]$: 387.0612, found 387.0612.

Compound S17. t-BuLi (1.7 m in hexanes, $8.07 \mathrm{~mL}, 13.7 \mathrm{mmol}$,) was added to a solution of alkyl iodide 19 $(1.62 \mathrm{~g}, 6.18 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 5 min , a solution of 9-MeO-9-BBN ($1.0 \mathrm{M}, 16.5 \mathrm{~mL}, 16.5 \mathrm{mmol}$) in THF (15.6 mL) was introduced and the resulting mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ before the solution was allowed to warm to ambient temperature. After 1 h , a solution of aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3.0 \mathrm{M}, 2.66 \mathrm{~mL}$, $7.99 \mathrm{mmol})$, alkenyl iodide $\mathbf{1 6}(1.00 \mathrm{~g}, 2.74 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($202 \mathrm{mg}, 10 \mathrm{~mol} \%$) in DMF (27 mL) was introduced and the mixture was stirred for 2 h at $50^{\circ} \mathrm{C}$. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with tert-butyl methyl ether ($4 \times 5 \mathrm{~mL}$), the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 2 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated. The crude material was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc, 100/1) to give the title compound as a colorless oil ($615 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=5.22-5.14(2 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{tq}, J=2.1 \mathrm{~Hz}), 2.28(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}), 2.20-2.05(6 \mathrm{H}, \mathrm{m}), 2.01-$ $1.97(2 \mathrm{H}, \mathrm{m}), 1.81(3 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 1.78(3 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}), 1.62(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.61(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s})$, $0.10(3 \mathrm{H}, \mathrm{s}), 0.07 \mathrm{ppm}(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.4,131.1,128.0,123.1,81.2,80.2,79.4$, 75.6, 62.6, 49.2, 39.6, 27.9, 26.8, 26.0 (3C), 19.3, 18.5, 16.7, 16.2, 3.7(2), 3.6(9), $-4.5,-4.9 \mathrm{ppm}$; IR (film): $\tilde{v}=2927,2856,1472,1462,1443,1386,1361,1343,1253,1142,1084,1005,937,906,836,777,732$, $650,535 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%) 249 (3), 193 (3), 185 (5), 184 (15), 183 (100), 127 (11), 121 (3), 105 (4), 74 (3), 73 (36), 69 (2); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{OSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 395.2741, found 395.2741.

Diyne 20. CSA ($12 \mathrm{mg}, 54 \mu \mathrm{~mol}$) was added to a solution of the TBS-ether S17 ($100 \mathrm{mg}, 0.27 \mathrm{mmol}$) in $\mathrm{MeOH}(2.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2.5 h , before it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and the reaction was quenched with sat. aq. NaHCO_{3}. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by flash chromatography (SiO_{2}, hexanes/EtOAc, 15/1) to yield the title compound as a colorless oil (58 mg , $84 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.25(1 \mathrm{H}, \mathrm{tq}, J=6.9,1.1 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{tq}, J=6.8$, $1.2 \mathrm{~Hz}), 4.40-4.34(1 \mathrm{H}, \mathrm{m}), 2.40-2.29(2 \mathrm{H}, \mathrm{m}), 2.19-2.11(6 \mathrm{H}, \mathrm{m}), 2.05-2.01(2 \mathrm{H}, \mathrm{m}), 1.92(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=4.5 \mathrm{~Hz}), 1.84(3 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 1.78(3 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}), 1.66(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.60 \mathrm{ppm}(3 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=136.1,130.7,129.6,123.6,80.9,80.1,79.3,75.6,60.1,48.5,39.5,27.8,26.5,19.3$, 16.3, 16.1, 3.8, 3.7 ppm ; IR (film): $\tilde{v}=2918,2856,1438,1383,1023,903,723,650 \mathrm{~cm}^{-1} ; \mathrm{MS}(E I): \mathrm{m} / \mathrm{z}(\%)$ 243 (2), 225 (6), 189 (9), 187 (5), 176 (4), 175 (10), 161 (10), 147 (15), 133 (12), 121 (12), 109 (10), 107 (26), 105 (24), 93 (26), 91 (18), 81 (17), 79 (16), 77 (12), 69 (100), 68 (18), 67 (18); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{ONa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 281.1876, found 281.1875.

Cycloalkyne 21. MS $5 \AA$ (3.50 g) were dispersed in freshly distilled toluene (150 mL), trisilanlol 11b ($12.9 \mathrm{mg}, 19.3 \mu \mathrm{~mol}$) was added, and the suspension was stirred for 1 h . Next, a solution of complex 3
 ($15.2 \mathrm{mg}, 19.3 \mu \mathrm{~mol}$) in toluene (1 mL) was added and stirring continued for 30 min .

A second flask was charged with diyne $20(50.0 \mathrm{mg}, 194 \mu \mathrm{~mol})$, MS $5 \AA(3.00 \mathrm{~g})$ and toluene $(235 \mathrm{~mL})$ and the mixture was stirred for 1 h before the solution of the catalyst was introduced. The resulting mixture was stirred at reflux temperature for 1.5 h before it was allowed to cool. All insoluble materials were filtered off through a pad of Celite and the filtrate was concentrated. The residue was purified by flash chromatography (SiO_{2}, hexanes/EtOAc, 8/1) to give the title compound as a colorless solid ($32.5 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.07-5.04(1 \mathrm{H}, \mathrm{m})$, $4.99-4.95(1 \mathrm{H}, \mathrm{m}), 4.50-4.45(1 \mathrm{H}, \mathrm{m}), 2.46-2.41(1 \mathrm{H}, \mathrm{m}), 2.36-2.19(6 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=4.3 \mathrm{~Hz}), 2.11-2.03(3 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{br} s), 1.49 \mathrm{ppm}(3 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=135.3$, 129.6, 129.1, 124.7, 86.1, 81.2, 62.3, 49.5, 39.3, 26.5, 25.0, 19.1, 16.1, 15.0 ppm; IR (film): $\tilde{v}=3360$, 2981, 2910, 2848, 1435, 1384, 1328, 1260, 1228, 1136, 1101, 1079, 1036, 1019, 998, 978, 903, 833, 811, 727, 650, 564, $550 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%) 203 (1), 190 (4), 189 (27), 172 (7), 171 (47), 161 (12), 133 (8), 121 (9), 117 (9), 107 (11), 105 (13), 93 (17), 91 (26), 81 (12), 79 (15), 77 (11), 69 (100), 68 (68), 67 (17); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ONa}\left[M+\mathrm{Na}^{+}\right]: 227.1406$, found 227.1406.
$\boldsymbol{\beta}$-Lactone 22. A solution of alkynol $21(25 \mathrm{mg}, 0.12 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(4.1 \mathrm{mg}, 4 \mathrm{~mol} \%)$ and dppb $(4.2 \mathrm{mg}, 8 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was prepared and transferred to an autoclave. The autoclave was filled with CO (41 bar) and H_{2} (14 bar) and the mixture was stirred at $95{ }^{\circ} \mathrm{C}$ for 24 h . The autoclave was allowed to reach ambient temperature before the pressure was released. The brown solution was filtered through a pad of Florisil and the filtrate was concentrated. The residue was purified by flash chromatography (SiO_{2}, hexanes/EtOAc, $20 / 1)$ to give the the title lactone as the main product ($5.0 \mathrm{mg}, 17 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.31$ $(1 \mathrm{H}, \mathrm{ddd}, J=12.6,4.0,1.6 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{ddt}, J=9.4,4.5,1.6 \mathrm{~Hz}), 5.09-5.03(2 \mathrm{H}, \mathrm{m}), 2.87-2.84(1 \mathrm{H}, \mathrm{m})$, $2.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.7,9.4 \mathrm{~Hz}), 2.46-2.42(1 \mathrm{H}, \mathrm{m}), 2.41-2.37(1 \mathrm{H}, \mathrm{m}), 2.24-2.18(1 \mathrm{H}, \mathrm{m}), 2.12-2.09$ $(1 \mathrm{H}, \mathrm{m}), 2.08-2.02(1 \mathrm{H}, \mathrm{m}), 2.01-1.95(2 \mathrm{H}, \mathrm{m}), 1.80-1.73(1 \mathrm{H}, \mathrm{m}), 1.62(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.56 \mathrm{ppm}(3 \mathrm{H}, \mathrm{d}$, $J=1.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=164.9,137.2,135.6,134.5,130.7,128.9,125.6,78.1,45.7$, 38.3, 32.2, 25.9, 25.4, 16.0, 15.4 ppm; MS (EI): m/z (\%) 232 (2), 189 (7), 188 (25), 175 (4), 173 (28), 162 (11), 161 (11), 159 (11), 149 (11), 147 (25), 146 (11), 145 (17), 133 (18), 131 (27), 123 (13), 119 (18), 107 (17), 106 (11), 105 (10), 96 (39), 94 (10), 93 (15), 92 (16), 91 (46), 81 (11), 79 (31), 77 (24), 68 (100), 67 (48), 65 (14); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]$: 255.1355, found 255.1355.

Compound 23. A solution of compound 21 ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(1.8 \mathrm{~mL})$ was dried over MS $3 \AA$ Å. The solution was transferred to another flask via canula and a solution of Red-Al ($0.12 \mathrm{~mL}, 0.61 \mathrm{mmol}$) in
 $\mathrm{Et}_{2} \mathrm{O}(6.0 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$. The ice bath was removed and the solution stirred at ambient temperature overnight. The solution was cooled to $-25^{\circ} \mathrm{C}$ before a solution of $\mathrm{I}_{2}(186 \mathrm{mg}, 0.73 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was introduced. Stirring was continued for another 45 min before sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was introduced. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc, 3/1) to yield the title compound as a colorless oil ($77 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.86-4.83(1 \mathrm{H}, \mathrm{m})$, $4.73-4.70(1 \mathrm{H}, \mathrm{m}), 4.52-4.47(1 \mathrm{H}, \mathrm{m}), 2.62-2.59(1 \mathrm{H}, \mathrm{m}), 2.52-2.48(2 \mathrm{H}, \mathrm{m}), 2.43-2.39(1 \mathrm{H}, \mathrm{m})$, $2.36-2.30(1 \mathrm{H}, \mathrm{m}), 2.19(1 \mathrm{H}, \mathrm{t}, J=11.5 \mathrm{~Hz}), 2.19(1 \mathrm{H}, \mathrm{dd}, J=12.6,3.3 \mathrm{~Hz}), 1.99(1 \mathrm{H}, \mathrm{td}, J=12.9,3.6 \mathrm{~Hz})$, $1.96-1.91(2 \mathrm{H}, \mathrm{m}), 1.63(3 \mathrm{H}, \mathrm{br} s), 1.63(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=3.3 \mathrm{~Hz}), 1.57 \mathrm{ppm}(3 \mathrm{H}, \mathrm{br} s) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=138.9,135.9,130.6,129.3,124.2,110.6,75.4,47.7,45.9,40.1,26.3,25.2,17.3,16.1 \mathrm{ppm} ; \mathrm{IR}$ (film): $\tilde{v}=2984,2941,1737,1447,1372,1300,1233,1098,1043,938,918,847,786,634,608 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI): m/z (\%) 333 (25), 332 (23), 317 (64), 291 (11), 258 (41), 245 (34), 228 (30), 222 (12), 122 (41), 121 (19), 106 (21), 97 (18), 95 (52), 81 (39), 70 (10), 69 (26), 68 (100); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ONa}$ $\left[M+\mathrm{Na}^{+}\right]: 355.0529$, found 355.0530 .
(\pm)-Manshurolide (12). A solution of alkenyl iodide $23(60 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{MeCN}(1.2 \mathrm{~mL})$ was added
 to a stirred solution of $\mathrm{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}(9.0 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and DPE-Phos ($14.5 \mathrm{mg}, 15 \mathrm{~mol} \%$) in $\mathrm{MeCN}(1.2 \mathrm{~mL})$. Then, $\mathrm{MeOH}(0.6 \mathrm{~mL})$ and $i-\mathrm{Pr}_{2} \mathrm{EtN}(92 \mu \mathrm{~L}, 0.54 \mathrm{mmol})$ were added. The resulting solution was saturated with CO and was stirred under CO atmosphere for 48 h . The reaction was quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with EtOAc, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc, 4/1) to give the title compound as colorless solid (40 mg , 95%). m.p. $=130-132{ }^{\circ} \mathrm{C}$; for the NMR data, see Tables S-2 and S-3; IR (film): $\tilde{v}=3078,2955,2918,2850,1743,1433,1355,1327,1259,1203,1110,1086,1068,1036$, $933,896,844,834,783 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%) 233 (11), 232 (55), 187 (6), 164 (42), 149 (14), 137 (9), 136 (56), 135 (44), 122 (11), 121 (57), 107 (25), 105 (13), 97 (12), 96 (20), 95 (13), 94 (28), $93(35), 91(22), 81$ (23), 80 (11), 79 (22), 77 (16), 70 (11), 69 (36), 68 (100), 67 (43); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}$ $\left[M+\mathrm{Na}^{+}\right]: 255.1355$, found 255.1354 .

The isolation paper reports an $[\alpha]_{D}^{24}=+56^{\circ}(\mathrm{EtOH}, \mathrm{c}=0.79),{ }^{10}$ whereas the two enantiomers obtained by separation of the racemic synthetic sample showed the following rotatory power (in the order, in which the enantiomers were eluting from the column): $[\alpha]_{D}^{20}=+519.8^{\circ}(\mathrm{c}=0.5, \mathrm{EtOH}) ;[\alpha]_{D}^{20}=-508.1^{\circ}(\mathrm{c}=$ $0.53, \mathrm{EtOH})$. The separation of the enantiomers was performed with a Shimadzu LC-10A micropreparative HPLC (Chiracel OD-H 09/13, $250 \mathrm{~mm}, \varnothing 7.6 \mathrm{~mm}$) eluting with n -heptane/2-propanol (98:2, v / v; $2.8 \mathrm{~mL} / \mathrm{min}, 4.1 \mathrm{MPa}, 298 \mathrm{~K}$).

Table S-1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data of manshurolide (in this case, the solvent peak for residual CHCl_{3} was calibrated to $\delta_{\mathrm{H}} \equiv 7.24$ ppm); numbering scheme as shown in the Insert.

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$						${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$	
No.	δ (ppm)	Integral	Splitting	COSY	J (Hz)	$\begin{gathered} \delta \\ (\mathrm{ppm}) \end{gathered}$	HMBC
1	5.10	1H	dq	2a, 2b, 10b, 12	5.9, 2.0	80.9	1, 2a, 2b, 4, 12, 14
2a	2.64	1H	ddd	1, 2b, 5a	14.1, 5.8, 1.1		
2b	2.41	1H	ddt	1,2a	14.1, 1.9, 0.7	40.6	1, 2a, 2b, 4, 12, 14
3	-	-	-	-	-	128.6	1, 2a, 2b, 4, 5a, 5b, 14
4	4.73	1H	dm	2b, 5a, 5b, 14	11.5	130.2	$\underset{14}{2 \mathrm{a}, 2 \mathrm{~b}, 4,5 \mathrm{a}, 5 \mathrm{~b}, 6 \mathrm{a}, 6 \mathrm{~b},}$
5a	1.92	1H	m	2a, 4, 5b, 6a, 6b, 14	-	25.	4, 5a, 5b, 6a, 6b, 14, 15
5 b	2.31	1H	m	4, 5a, 6a, 6b	-		4, $5 \mathrm{a}, 5 \mathrm{l}, 6 \mathrm{a}, 6 \mathrm{~b}, 14,15$
6a	1.91	1H	m	5a, 5b, 6b	-		
6b	2.15	1H	m	5a, 5b, 6a, 15	-	39.0	4, 5a, 5b, 6a, 6b, 8, 15
7	-	-	-	-	-	135.6	$5 \mathrm{a}, 6 \mathrm{a}, 6 \mathrm{~b}, 9 \mathrm{a}, 9 \mathrm{~b}, 15$
8	4.70	1H	ddqi	10.9, 3.2, 1.4	9a, 9b, 10b, 15	125.0	$\frac{6 a, 6 b, 8,9 a, 9 b, 10 a, 10 b,}{15}$
9a	2.06	1H	m	8, 9b, 10a, 10b, 15	-	24.4	$8,9 b, 10 a, 10 b, 12,15$
9 b	2.54	1H	m	8, 9a, 10a, 10b	-	24.4	8, 9b, 10a, 10b, 12, 15
10a	2.24	1H	m	9a, 9b, 10b	-		
10b	2.53	1H	m	1, 8, 9a, 9b, 10a, 12	-	25.6	8, 9a, 9b, 10a, 10b, 12, 15
11	-	-	-	-	-	133.0	1, 9a, 9b, 10a, 10b, 12
12	6.80	1H	t	1, 10b	1.5	150.7	1, 2a, 2b, 10a, 10b, 12
13	-	-	-	-	-	173.9	1, 10a, 10b, 12
14	1.56	3H	t	4, 5a	1.4	18.9	2a, 2b, 4, 14
15	1.41	3H	dt	6b, 8, 9a	0.7, 1.4	14.9	5b, 6a, 8, 15

Table S-2. Comparison of the spectral data of synthetic manshurolide (12) ($600 \mathrm{MHz}, 298 \mathrm{~K}$) with those of the natural product reported in the literature; (in this case, the solvent peak for residual CHCl_{3} was calibrated to $\delta_{\mathrm{H}} \equiv 7.24 \mathrm{ppm}$)

\# (lit.)	\# (reassigned)	natural $12\left(\mathrm{CDCl}_{3}\right)^{*}$		synthetic $12\left(\mathrm{CDCl}_{3}\right)$		Δ (δ (synth.)- δ (lit.))	
		${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	$\Delta^{1} \mathrm{H}$	$\Delta^{13} \mathrm{C}$
1	1	5.10	80.1	5.10	80.9	0.00	0.8
2	2	2.42	40.9	2.64	40.6	0.20	-0.3
				2.41		-0.01	
11	3	-	128.6	-	128.6	-	0.0
4	4	4.76	130.2	4.73	130.2	-0.03	0.0
5	5	1.93	25.4	1.92	25.1	-0.01	-0.3
		2.32		2.31		-0.01	
6	6	1.94	39.2	1.91	39.0	-0.03	-0.2
		2.15		2.15		0.00	
7	7	-	135.5	-	135.6	-	0.1
8	8	4.72	125.1	4.70	125.0	-0.02	-0.1
9	9	2.08	24.6	2.06	24.4	-0.02	-0.2
		2.56		2.54		-0.02	
10	10	2.28	25.8	2.24	25.6	-0.04	-0.3
		2.53		2.53		0.00	
3	11	-	133.1	-	133.0	-	-0.1
12	12	6.81	150.5	6.80	150.7	-0.01	0.2
13	13	-	173.6	-	173.9	-	0.3
14	14	1.57	19.1	1.56	18.9	-0.01	-0.2
15	15	1.43	15.1	1.41	14.9	-0.02	-0.2

${ }^{1)}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR shifts were reassigned according to 2D experiments.
${ }^{2)}$ Source of data: G. Rücker, C. W. Ming, R. Mayer, G. Will, A. Güllmann, Phytochemistry 1990, 29, 983.

Total Synthesis of Ivorenolide A

(S)-2-((4-Methoxybenzyl)oxy)propanal (38). DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.64 \mathrm{~mL}, 5.64 \mathrm{mmol}$) was slowly PMBO $\underbrace{\text { OII }}_{\vdots}$ added over the course of 1 h to a solution of methyl (S)-2-((4methoxybenzyl)oxy)propanoate ($1.15 \mathrm{~g}, 5.12 \mathrm{mmol})^{11}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction was left to proceed at $-78^{\circ} \mathrm{C}$ for 20 min before it was quenched by slow addition of cold $\mathrm{MeOH}(3 \mathrm{~mL})$ followed by sat. aq. Na / K-tatrate (25 mL). The suspension was stirred for 1 h at ambient temperature until clear phase separation was observed. The organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined extracts were dried over MgSO_{4} and the solvent was carefully evaporated. The crude material was purfied by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $15 \% \mathrm{Et}_{2} \mathrm{O}$ in pentanes) yielding the desired aldehyde as a colorless liquid ($0.88 \mathrm{~g}, 89 \%$). $[\alpha]_{20}^{D}=-20.2(c=$ $\left.1.0, \mathrm{CHCl}_{3}\right)^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.63(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H})^{\prime} 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 2 \mathrm{H})$, $4.56(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.31 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta=203.8,159.6,129.8,114.1,79.3,71.9,55.4,15.5 \mathrm{ppm} ; \mathrm{IR}$ (film): $\tilde{v}=2837,1732,1612,1513$, 1302, 1246, 1174, 1090, 1032, 820; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na} 217.08357$, found 217.08351.
(2S,3R)-2-((4-Methoxybenzyl)oxy)octa-4,6-diyn-3-ol (39). A 25 mL Schlenk flask equipped with a cooling mantle was charged with (R, R)-ProPhenol (41) ($83.2 \mathrm{mg}, 0.13 \mathrm{mmol}, 10 \mathrm{~mol} \%$), min . The solution was cooled to $0{ }^{\circ} \mathrm{C}$, aldehyde $38(0.25 \mathrm{~g}, 1.28 \mathrm{mmol})$ was added, and stirring was continued for 16 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4}. The solvent was carefully removed under reduced pressure and the crude product was purified by flash chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O}$ in pentanes) to yield the desired product as an colorless oil ($205 \mathrm{mg}, 61 \%$). $[\alpha]_{20}^{D}=-11.2\left(c=1.0, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, 2 H), 4.52 (dd, J = 56.9, $11.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.81 (s, 3H), 3.65 (qd, J = 6.4, 3.7 Hz, 1H), 1.93 (s, 3H), $1.27 \mathrm{ppm}(\mathrm{d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=130.1,129.6,114.0,76.5,71.2,70.9,65.8,55.4,15.0,4.5$, 1.2 ppm ; IR (film): $\tilde{v}=2932,1612,1513,1302,1248,1175,1083,822$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}$ 281.11486, found 281.11481.

1-Methoxy-4-((($2 S, 3 R$)-3-(methoxymethoxy)octa-4,6-diyn-2-yl)oxy)methyl)benzene (S18). A 25 mL
 Schlenk flask was charged with alcohol 39 ($120.0 \mathrm{mg}, 0.46 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and Hünig's base ($0.174 \mathrm{~mL}, 1.0 \mathrm{mmol}$). The solution was cooled to $0^{\circ} \mathrm{C}$ before MOM-Cl ($0.061 \mathrm{~mL}, 0.81 \mathrm{mmol}$) was added. The cooling bath was removed and the mixture stirred for 16 h before the reaction was quenched with water (10 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and the solvent was carefully removed under reduced pressure. The crude product was purified by flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in pentanes) to give the desired product as a colorless oil (118 mg , $85 \%) .[\alpha]_{20}^{D}=-43.0\left(c=0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.85(\mathrm{~m}$, $2 \mathrm{H}), 4.91(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.52(\mathrm{~m}, 3 \mathrm{H}), 4.45(\mathrm{dd}, J=4.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{qd}, \mathrm{J}=$ $6.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 2 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=159.3,130.5,129.5,113.9,94.6,76.3,72.0,71.6,71.3,68.8,64.0,55.9,55.4,16.0,4.5 \mathrm{ppm} ; \mathrm{IR}$ (film): $\tilde{v}=2932,1513,1247,1148,1097,1023,808 ;$ HRMS (ESI): m / z : calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na} 325.14096$, found 325.14103 .
(2S,3R)-3-(Methoxymethoxy)octa-4,6-diyn-2-ol (40). DDQ (163 mg, 0.72 mmol) was added in one OMOM, portion to a solution of compound $\mathbf{S 1 8}(110 \mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$ and $\mathrm{pH} \sim 7$ buffer (0.5 mL) at $0^{\circ} \mathrm{C}$. The mixturte was stirred for 3 h at this temperature before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and the combined extracts were dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O}$ in pentanes) to give the title compound as a yellow oil ($48 \mathrm{mg}, 72 \%$). $[\alpha]_{20}^{D}=-59.1$ ($c=0.5$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.92(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, \mathrm{J}=6.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.30(\mathrm{~m}$, $1 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=6.4$ $\mathrm{Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=94.6,77.2,72.6,71.5,70.5,69.5,63.7,56.0,18.3,4.4 \mathrm{ppm} ; \mathrm{IR}$ (film): $\tilde{v}=3441,2892,2258,1098$, 1026; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na} 205.08373$, found 205.08351.
(Z)-3-lodoacrylaldehyde (28). A 50 mL 3 -necked round bottom flask equipped with a thermometer, a gas inlet and a rubber septum was charged with ethyl-(Z)-iodoacrylate ($5.0 \mathrm{mmol}, 0.64 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was cooled to $-80^{\circ} \mathrm{C}\left(n\right.$-butanol $/ \mathrm{N}_{2}$ (liq.) bath) before DIBAL-H (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.1 \mathrm{mmol}, 5.1 \mathrm{~mL}$) was added very carefully at such a rate as to maintain the internal temperature between $-76^{\circ} \mathrm{C}$ and $-82^{\circ} \mathrm{C}$. After complete addition, the reaction was stirred at -78 ${ }^{\circ} \mathrm{C}$ until $\mathrm{GC} / \mathrm{MS}$ indicated complete consumption of the starting material. The reaction was carefully quenched at this temperature with anhydrous $\mathrm{MeOH}(2.5 \mathrm{~mL})$ followed by sat. aq. Rochelle salt solution $(12.5 \mathrm{~mL})$. Stirring was continued at ambient temperature for 30 min before the mixture was filtered through a short pad of Celite. The solvent was carefully removed under reduced pressure, keeping the temperature of the water bath around $0^{\circ} \mathrm{C}$.

The crude aldehyde ($810 \mathrm{mg}, 86 \%$) was not purified any further due to its instability; it was immediately transferred to a 25 mL Schlenk flask and dissolved in toluene (8.1 mL). The solution can be stored under argon at $-20^{\circ} \mathrm{C}$ for ca. $3-4$ weeks, without significant decomposition or isomerization of the double bond being observed.
(S,Z)-1-lodoocta-1-en-4,6-diyn-3-ol (30). A 25 mL Schlenk flask equipped with a cooling mantle was
 charged with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}(0.042 \mathrm{~g}, 0.15 \mathrm{mmol}, 20 \mathrm{~mol} \%),(R, R)$-ProPhenol (41) ($0.048 \mathrm{~g}, 0.076$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$) and toluene (3 mL). The solution was stirred for 5 min before diyne 29 ($0.16 \mathrm{~g}, 2.5 \mathrm{mmol}$) was introduced, followed by the dropwise addition of $\mathrm{ZnMe}_{2}(1.2 \mathrm{M}$ in toluene, $1.62 \mathrm{~mL}, 1.95 \mathrm{mmol})$. The solution was stirred for 1 h at room temperature before it was cooled to $0^{\circ} \mathrm{C}$. A solution of aldehyde $28(0.14 \mathrm{~g}, 0.76 \mathrm{mmol})$ in toluene (1.4 mL) was added dropwise at this temperature and the reaction was allowed to proceed overnight. For work up, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the resulting suspension was stirred for 1 h at room temperature until a clear separation of the layers was observed. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, the combined extracts were dried over MgSO_{4} and the solvent was evaporated.

Purification of the crude material yielded the desired product as a colorless oil which turns yellow on standing ($0.18 \mathrm{~g}, 86 \%, 70 \% e e) .[\alpha]_{20}^{D}=+275.9\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.53(\mathrm{dd}, \mathrm{J}$ $=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{ddt}, J=6.7,4.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ $\mathrm{ppm}(\mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.1,84.9,78.6,72.4,71.2,65.9,63.6,4.5 \mathrm{ppm}$; IR (film): $\tilde{v}=3333,2257,1607,1427,1261,1029,1008,933,735,594 ;$ HRMS (ESI): m/z: calcd. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{IONa} 268.94355$, found 268.94338.

The ee (70\%) was determined by formation of the (R)-MTPA-Ester and (S)-MTPA-esters according to the standard procedure. ${ }^{12}$

(S,Z)-1-lodo-3-(methoxymethoxy)octa-1-en-4,6-diyne (31). Hünig's base ($0.87 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and MOM-
 $\mathrm{Cl}(0.26 \mathrm{~mL}, 3.5 \mathrm{mmol})$ were added successively to a solution of alcohol $30(180 \mathrm{mg}$, $0.73 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The cooling bath was removed and the mixture stirred at room temperature until complete consumption of the starting material was observed. The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined extracts were dried over MgSO_{4} and the solvent evaporated under reduced pressure. Purification of the residue via flash chromatography (5% $\mathrm{Et}_{2} \mathrm{O}$ in pentanes) yielded the title compound as pale yellow oil ($181 \mathrm{mg}, 85 \%$). $[\alpha]_{20}^{D}=+172.2$ ($c=1.0$, $\left.\mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.53(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (ddt, $J=$ $6.7,4.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 1.94 \mathrm{ppm}(\mathrm{d}, J=1.1 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.5,93.9,85.6,78.0,71.7,70.7,68.8,63.7,56.1,4.5 \mathrm{ppm}$; IR (film): $\tilde{v}=2887,2256,1262,1147,1094,1053,1008,964,926,735$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{2} \mathrm{Na}$ 312.97036, found 312.96960.

Methyl (S,Z)-11-(methoxymethoxy)hexadeca-9-en-12,14-diynoate (34). A 10 mL Schlenk flask was
 charged with Zn dust ($56.1 \mathrm{mg}, 0.86 \mathrm{mmol}$) and anhydrous $\mathrm{LiCl}(28.0 \mathrm{mg}, 0.66$ $\mathrm{mmol})$. The mixture was dried in vacuum for 5 min at $150^{\circ} \mathrm{C}$ (heat-gun). Once the flask had reached ambient temperature and was flushed with Ar, THF (0.3 mL) was introduced and the suspension was stirred at $60{ }^{\circ} \mathrm{C}$ before $1,2-$ dibromoethane (0.01 mL) was added. After stirring for $5 \mathrm{~min}, \mathrm{TMSCl}(0.01 \mathrm{~mL})$
was introduced, followed by a solution of methyl 8-iodoctanoate ($187 \mathrm{mg}, 0.66 \mathrm{mmol}$) in THF (0.3 mL). The suspension was vigorously stirred for 5 h at $45^{\circ} \mathrm{C}$ and then at room temperature overnight. GC/MS revealed $\sim 90 \%$ conversion (prolonged stirring did not further increase the conversion) of the starting material. Stirring was stopped and the remaining Zn -dust was allowed to settle ($\sim 1 \mathrm{~h}$.) giving a $\sim 1 \mathrm{M}$ solution of the organozinc compound 33.

A second Schlenk flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($3.4 \mathrm{mg}, 0.005 \mathrm{mmol}, 4$ mol\%), alkenyl iodide 31 $(40.0 \mathrm{mg}, 0.13 \mathrm{mmol})$, THF (0.5 mL) and TMEDA ($0.025 \mathrm{~mL}, 0.17 \mathrm{mmol}$). The resulting light yellow solution was stirred for 10 min at room temperature before it was warmed to $50^{\circ} \mathrm{C}$. At this temperature, an aliquot of the of the freshly prepared organozinc solution (1.5 equiv.) was added dropwise, resulting in a change of color from light yellow to deep orange. The mixture was stirred for another 1 h at $50^{\circ} \mathrm{C}$ before it was allowed to cool to room temperature. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5$ mL) and the mixture diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 10 \mathrm{~mL}$), the combined extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by flash chromatography (EtOAc/hexanes 5\% to 10%) to give the title compound as colorless oil ($32.8 \mathrm{mg}, 75 \%$). $[\alpha]_{20}^{D}=+45.1\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.67-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{dt}, J=8.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.93$ $(\mathrm{d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.25 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.1,134.5,125.8,93.2,72.7,70.3,63.6,61.1,55.5,51.3,33.9,29.0,28.9,28.8,27.4$, 24.7, 22.2, 13.9, 4.1 ppm ; IR (film): $\tilde{v}=2929,2856,1737,1436,1150,1094,1025,923 ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z}:$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na} 343.18793$, found 343.18798.
(S,Z)-11-(Methoxymethoxy)hexadeca-9-en-12,14-diynoic acid (S19). A solution of LiOH (0.5 M in water, $23.9 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added to a solution of ester $34(34.0 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$
 eq.) in THF/MeOH (2/1, 4 mL). The mixture was stirred at room temperature for 4 h before it was carefully acidified $(\mathrm{pH}=2-3)$ with $\mathrm{HCl}(3 \mathrm{M})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and the solvent was evaporated under reduced pressure yielding the desired acid as pale yellow oil which was used without further purification ($30 \mathrm{mg}, 89 \%$). $[\alpha]_{20}^{D}=+33.6\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=5.63$ (dtd, $\left.J=10.7,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.47(\mathrm{ddt}, J=10.4,8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dt}, J=8.6,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.06(\mathrm{~m}$, $2 \mathrm{H}), 1.93(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.27 \mathrm{ppm}(\mathrm{m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 179.0, 134.7, 126.0, 93.4, 72.8, 70.5, 63.8, 61.3, 55.6, 33.8, 29.1, 29.0, 28.9, 27.5, 24.6, 4.3 ppm ; IR (film): $\tilde{v}=2928,2855,1707,1150,1093,1025,922 ; H R M S(E S I): m / z$: calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{4} 305.17603$, found 305.17584.
(2S,3R)-3-(Methoxymethoxy)octa-4,6-diyn-2-yl
(S,Z)-11-(methoxymethoxy)hexadeca-9-en-12,14-
 diynoate (35). $\mathrm{Et}_{3} \mathrm{~N}$ ($0.02 \mathrm{~mL}, 0.14 \mathrm{mmol}$) and Yamaguchi-reagent (29.4 $\mathrm{mg}, 0.12 \mathrm{mmol}$) were successively added at $0^{\circ} \mathrm{C}$ to a solution of acid $\mathbf{S 1 9}$ ($29.0 \mathrm{mg}, 0.095 \mathrm{mmol}$) in toluene (1 mL). The mixture was stirred at this temperature until TLC indicates complete conversion of the
starting material. A solution of alcohol 40 ($17.1 \mathrm{mg}, 0.094 \mathrm{mmol}$) and DMAP ($5.7 \mathrm{mg}, 0.047 \mathrm{mmol}$) in toluene (1 mL) was added and stirring continued at ambient temperature for 2 h . The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ with $\mathrm{HCl}(1 \mathrm{~m}, 5 \mathrm{~mL})$ and the mixture was diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$. The aqueous phase was extracted EtOAc ($2 \times 10 \mathrm{~mL}$), the combined extracts were washed with brine, dried over MgSO_{4}, and the solvent was evaporated. The crude material was purified by flash chromatography (10% $\rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to give the title compound as a colorless syrup ($34 \mathrm{mg}, 79 \%$). $[\alpha]_{20}^{D}=-6.5$ ($c=$ $0.5, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.63(\mathrm{dtd}, J=10.7,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{ddt}, \mathrm{J}=10.3,8.7,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.14(\mathrm{dt}, J=8.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{qd}, J=6.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.9,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{dd}, J=4.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.32(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.14-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.93(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{t}, \mathrm{J}$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.26 \mathrm{ppm}(\mathrm{m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.1,134.9,126.1,94.4,93.5$, $72.9,71.9,70.6,70.5,68.1,63,963.7,61.3,55.8,55.8,34.5,29.4,29.2,29.1,29.1,27.7,25.0,15.4,4.4$, 4.4, 1.2 ppm ; IR (film): $\tilde{v}=2928,2855,1707,1150,1093,1025,922$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Na} 493.25662$, found 493.25606 .
(12S,17R,18S,Z)-12,17-Bis(methoxymethoxy)-18-methyloxacyclooctadeca-10-en-13,15-diyn-2-one (36).

A solution of tris-silanol 11b ($9.7 \mathrm{mg}, 0.011 \mathrm{mmol}$) and complex $\mathbf{3}(6.5 \mathrm{mg}$, 0.01 mmol) in toluene (1 mL) was vigorously stirred for 10 min to give a clear brown stock solution of the catalyst ($0.01 \mathrm{mmol} / \mathrm{mL}$) which has to be used within ca 30-40 min before it turns dark.

A 25 mL Schlenk flask was charged with $5 \AA \mathrm{MS}(2 \mathrm{mg} / \mu \mathrm{mol}$ substrate) under argon, the flask was evacuated and the molecular sieves were dried for $3-5 \mathrm{~min}$ at ca. $350^{\circ} \mathrm{C}$ (heat gun). The flask was backfilled with argon and a solution of compound $35(15.0 \mathrm{mg}, 0.031 \mathrm{mmol})$ in toluene (3.4 mL) was introduced. After stirring for 1 h , the flask was immersed into an oil bath at $60^{\circ} \mathrm{C}$ and an aliquot of the catalyst stock solution ($0.62 \mathrm{~mL}, 0.0062 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 45 min before it was cooled to room temperature and filtrated through a pad of silica, which was rinsed with EtOAc (30 mL). The combined filtrates were evaporated and the crude product was purified by flash chromatography (10% EtOAc in hexanes) to give the title compound as pale yellow oil ($9.7 \mathrm{mg}, 78 \%$). $[\alpha]_{20}^{D}=-61.9\left(0.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.59(\mathrm{tdd}, \mathrm{J}=10.1,5.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-$ $5.44(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.61(\mathrm{dd}, \mathrm{J}=6.9,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{dd}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.23(\mathrm{~m}, 2 \mathrm{H})$, $2.20-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=173.0,134.6,126.5,94.5,93.7,75.8,70.7,70.5,69.6,69.1,61.7,56.1,55.8$, 35.5, 29.7, 29.6, 28.8, 28.7, 28.1, 25.5, 17.6; IR (film): $\tilde{v}=2932,2857,1738,1151,1098,1027$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Na} 415.20942$, found 415.20911.
(12S,17R,18S,Z)-12,17-Dihydroxy-18-methyloxacyclooctadeca-10-en-13,15-diyn-2-one (37). A solution
 of compound $36(9.0 \mathrm{mg}, 0.023 \mathrm{mmol})$ in $\mathrm{EtOH}(1 \mathrm{~mL})$ and $\mathrm{HCl}(3 \mathrm{M}, 0.04 \mathrm{~mL})$ was stirred at $70^{\circ} \mathrm{C}$ for 4 h . Since TLC revealed incomplete conversion, additional HCl $\left(3 \mathrm{M}, 0.04 \mathrm{~mL}\right.$) was added and stirring was continued for another 6 h at $70^{\circ} \mathrm{C}$. The mixture was allowed to cool before it was neutralized with sat. aq. NaHCO_{3}. The aqueous layer was extracted with tert-butyl methyl ether, the extracts were dried over MgSO_{4} and
evaporated, and the residue was purified by flash chromatography ($40 \% \rightarrow 50 \% \mathrm{Et}_{2} \mathrm{O}$ in pentanes) to give the title compound as a colorless oil ($4.4 \mathrm{mg}, 64 \%$). Small amounts of unreacted starting material was recovered and resubjected to MOM-cleavage under the same conditions. $[\alpha]_{20}^{D}=+61,2(0.5$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.59-5.46(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{dd}, \mathrm{J}=6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{qd}, \mathrm{J}=6.5$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.75-$ $1.56(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.18(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.6,133.6,128.6,79.0,77.3,74.2$, 70.3, 69.1, 67.0, 59.1, 35.5, 29.7, 29.6, 28.8(2C), 28.2, 25.6, 17.5; IR (film): $\tilde{v}=3383,2929,2856,1713$, 1262, 1046; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}$ 327.15659, found 327.15668.

Ivorenolide \mathbf{A} (24). m-CPBA ($8.6 \mathrm{mg}, 0.055 \mathrm{mmol}$) was added in one portion to a solution of compound $37(3.4 \mathrm{mg}, 0.011 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and for an
 additional 6 h at room temperature before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous layer was extracted with tert-butyl methyl ether (3 x 10 mL) and the combined organic layers were dried over MgSO_{4}. The solvent was evaporated and the residue purified by flash chromatography $(30 \% \rightarrow 40 \% \rightarrow 50 \%$ tert-butyl methyl ether in pentanes) to give the title compound as white crystals ($2.5 \mathrm{mg}, 74 \%$). $[\alpha]_{20}^{D}=$ $+39.2(0.2, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta=8.27(\mathrm{~s},(\mathrm{br}) 2 \mathrm{H}, \mathrm{OH}), 5.44(\mathrm{dq}, \mathrm{J}=8.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ -4.67 (m, 2H), 3.51 (dd, J = 8.1, 4.2 Hz, 1H), 3.09 (ddd, J = 10.1, 4.3, 3.0 Hz, 1H), 2.47-2.37 (m, 2H), 2.01 $-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$): $\delta=172.9,81.3,78.5,72.8,70.3,68.7,65.5,62.2,61.1,57.0,35.0,30.0,29.8,29.1$, 28.6, 26.2, 25.6, 17.7; IR (film): $\tilde{v}=3394,2928,2856,1735,1458,1260,1046,797 ;$ HRMS (ESI): m / z : calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na} 343.15156$, found 343.15159 .

Studies towards Lythrancepin I

3-(4-Methoxyphenyl)propanal (S20). A Schlenk tube was charged with $\mathrm{NaHCO}_{3}(7.18 \mathrm{~g}, 85.5 \mathrm{mmol})$, $\mathrm{MeO} \quad \mathrm{Bu}_{4} \mathrm{NCl}(11.9 \mathrm{~g}, 42.7 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(95.9 \mathrm{mg}, 0.43 \mathrm{mmol})$ and the vessel was then evacuated and backfilled with Argon three times. A solution of 1-iodo-4methoxybenzene ($43, \mathrm{X}=\mathrm{I}$) $(10.0 \mathrm{~g}, 42.7 \mathrm{mmol})$ in DMF (43 mL) and allyl alcohol $(4.36 \mathrm{~mL}, 64.1 \mathrm{mmol})$ were successively added and the mixture was stirred for 14 h at $50^{\circ} \mathrm{C}$. The suspension was filtered through a plug of Celite, eluting with EtOAc (400 mL). The combined filtrates were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ and brine (100 mL), and then dried over MgSO_{4}. The solvent was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 20:1 $\rightarrow 5: 1$) to afford the product as a yellow liquid ($5.69 \mathrm{~g}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.80(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.72 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.7,158.1,132.3,129.2(2 \mathrm{C}), 114.0(2 \mathrm{C}), 55.2,45.5,27.2 \mathrm{ppm}$; IR (film): $\tilde{v}=$ 2936, 2835, 2724, 1720, 1611, 1584, 1501, 1464, 1443, 1389, 1300, 1246, 1178, 1111, 1033, 860, 812, $769,542,519 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 164 (41), 121 (100), 108 (27), 91 (16), 78 (11), 77 (19); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 187.07295$, found 187.07299.

4-(3,3-Dimethoxypropyl)-2-iodo-1-methoxybenzene (44). $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ (11.3 g, 36.4 mmol) and I_{2} ($9.23 \mathrm{~g}, 36.4$
 mmol) were added to a solution of 3-(4-methoxyphenyl) propanal (S20) (5.69 g, 34.7 mmol) in MeOH (347 mL). The initially dark brown suspension was vigorously stirred for 1 h , while turning bright yellow. The reaction was quenched with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and the mixture filtered through a plug of Celite, eluting with EtOAc (100 mL). Brine (500 mL) was added to the combined filtrates and the aqueous layer was extracted with EtOAc ($3 \times 500 \mathrm{~mL}$). The combined extracts were dried (MgSO_{4}) and concentrated under reduced pressure. Purification of the residue by flash chromatography (hexanes/EtOAc, 6:1) yielded the title compound as a yellow liquid ($10.2 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta=7.61(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 6 \mathrm{H}), 2.60-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.84 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 156.3, 139.2, 135.8, 129.3, 110.8, 103.5, 85.9, 56.3 (2C), 52.7, 34.1, 29.4 ppm; IR (film): $\tilde{v}=2950,2939$, 2830, 1490, 1459, 1440, 1384, 1278, 1252, 1181, 1124, 1077, 1053, 1019, 892, $812 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ (\%): 336 (22), 305 (14), 304 (100), 247 (67), 177 (21), 146 (13), 90 (11), 75 (48); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}: 359.01146$, found 359.01138 .
(4-Methoxyphenyl)trimethylsilane (45). nBuLi (1.6 M in hexanes, $65.2 \mathrm{~mL}, 104 \mathrm{mmol}$) was added within
 45 min to a solution of 1-bromo-4-methoxybenzene ($43, \mathrm{X}=\mathrm{Br}$) ($10.0 \mathrm{~mL}, 80.2 \mathrm{mmol}$) in THF (159 mL) at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at this temperature, $\mathrm{TMSCl}(15.3$ $\mathrm{mL}, 120 \mathrm{mmol}$) was added dropwise. The suspension was stirred for 17 h at room temperature before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 250 \mathrm{~mL}$), the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated to afford the product as a yellow liquid ($14.3 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.46(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.92(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 0.26 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.2,134.7(2 \mathrm{C})$, 131.3, 113.5 (2C), 55.0, -0.9 (3C) ppm; IR (film): $\tilde{v}=2954,2899,2836,1595,1565,1503,1464,1277$, 1246, 1182, 1111, 1033, 838, 756, 595, $522 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 180 (16), 166 (14), 165 (100); HRMS (EI): m / z : calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{OSi}[\mathrm{M}]^{+}: 180.09704$, found 180.09701.
(3-lodo-4-methoxyphenyl)trimethylsilane (46). A 2 L 2-necked round bottom flask equipped with a MeO dropping funnel was charged with TMEDA ($26.2 \mathrm{~mL}, 175 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{O}$ (300 mL). nBuLi (1.6 M in hexanes, $198 \mathrm{~mL}, 317 \mathrm{mmol}$) was added dropwise to this solution at room temperature. The dropping funnel was rinsed with $\mathrm{Et}_{2} \mathrm{O}(37.5 \mathrm{~mL})$ and the mixture was stirred for 30 min at room temperature. A solution of silane 45 ($14.3 \mathrm{~g}, 79.4 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $(37.5 \mathrm{~mL})$ was added within 10 min and the resulting suspension was stirred for 2.5 h at room temperature. Next, it was cooled to $-78^{\circ} \mathrm{C}$ and a solution of $\mathrm{I}_{2}(68.5 \mathrm{~g}, 270 \mathrm{mmol}$) in THF (375 mL) was added within 1 h at this temperature. The slurry was allowed to reach room temperature within 14 h before the reaction was quenched with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(750 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 500 \mathrm{~mL}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 40:1) to afford the product as a yellow liquid (19.9 g, 82\%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 0.25 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta=158.5,144.3,134.7,134.6,110.9,86.9,56.1,-1.0$ (3C) ppm; IR (film): $\tilde{v}=3005,2953,2895$,

2837, 1577, 1483, 1459, 1438, 1360, 1283, 1267, 1246, 1157, 1110, 1046, 1018, 833, 806, 753, 692, 667, 645, 607, 559, 520, $424 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 306 (41), 292 (14), 291 (100); HRMS (EI): m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{OISi}[\mathrm{M}]^{+}: 305.99369$, found 305.99340 .

Arylzinc iodide lithium chloride adduct 47. A Schlenk tube was charged with pre-dried LiCl ($1.66 \mathrm{~g}, 39.2$
 mmol) and then heated under vacuum (heatgun). Zinc powder ($5.13 \mathrm{~g}, 78.4 \mathrm{mmol}$) was added and the solids were again heated under vacuum (heatgun). After the vessel had reached room temperature, THF (26 mL) was added and the suspension was stirred at $80^{\circ} \mathrm{C} .1,2$-Dibromoethane ($113 \mu \mathrm{~L}, 1.31 \mathrm{mmol}$) and TMSCI ($33 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) were added at this temperature before (3 -iodo-4-methoxyphenyl)trimethylsilane (46) ($8.00 \mathrm{~g}, 26.1 \mathrm{mmol}$) was introduced, followed by a second portion of 1,2-dibromoethane ($113 \mu \mathrm{~L}, 1.31 \mathrm{mmol}$). The sealed tube was stirred for 24 h at $80^{\circ} \mathrm{C}$, after which the suspension was allowed to settle. Titration of the supernatant against I_{2} showed a molarity of 0.75 M .

Biaryl 48. $\mathrm{Pd}(\mathrm{OAc})_{2}(85.7 \mathrm{mg}, 0.382 \mathrm{mmol})$, $\mathrm{SPhos}(314 \mathrm{mg}, 0.764 \mathrm{mmol})$ and an aliquot of the solution of
 the arylzinc iodide lithium chloride adduct 47 (0.75 m in THF, 28.0 mL , $21.0 \mathrm{mmol})$ were added to a solution of 4-(3,3-dimethoxypropyl)-2-iodo-1-methoxybenzene (44) ($6.42 \mathrm{~g}, 19.1 \mathrm{mmol}$) in THF (28.5 mL) at room temperature. The resulting mixture was stirred for 2 h before it was filtered through a plug of silica, eluting with EtOAc (50 mL). The solvent of the combined filtrates was evaporated and the residue was purified by flash chromatography (hexanes/tert-butyl methyl ether, 4:1) to yield the product as a brown liquid ($6.90 \mathrm{~g}, 93 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.52(\mathrm{dd}, \mathrm{J}=8.1$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, \mathrm{J}=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 6 \mathrm{H}), 2.71-2.67$ ($\mathrm{m}, 2 \mathrm{H}$), 2.00-1.94 (m, 2H), $0.29 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.6,155.3,136.5,134.0$, 133.2, 131.4, 130.7, 128.2, 127.8, 127.1, 111.0, 110.3, 103.7, 55.7, 55.4, 52.6 (2C), 34.1, 29.9, -0.9 (3C) ppm; IR (film): $\tilde{v}=2950,2901,2832,1588,1500,1462,1383,1369,1274,1242,1177,1150,1122,1109$, 1078, 1054, 1028, 912, 895, 836, 810, 754, $610 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 389 (23), 388 (80), 356 (20), 342 (11), 341 (35), 326 (13), 325 (46), 324 (100), 315 (21), 310 (16), 309 (41), 300 (10), 299 (30), 285 (14), 269 (14), 253 (13), 142 (24), 89 (19), 75 (39), 73 (33); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 411.19621, found 411.19617.

Iodide 49. NIS ($8.79 \mathrm{~g}, 39.1 \mathrm{mmol}$) was added to a solution of biaryl $48(6.90 \mathrm{~g}, 17.8 \mathrm{mmol})$ in MeCN (178
 mL) at room temperature. After stirring for 2.5 h , the solvent was evaporated and the residue was purified by flash chromatography (hexanes/tert-butyl methyl ether, 3:1 \rightarrow 2:1) to afford the title compound as white solid $(5.75 \mathrm{~g}, 73 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.59(\mathrm{dd}, \mathrm{J}=8.7$,
$2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, \mathrm{J}=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 6 \mathrm{H}), 2.66-2.62$ (m, 2H), 1.95-1.90 ppm (m, 2H); ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.9,155.0,139.6,137.1,133.3,131.1$, 130.3, 128.8, 126.0, 113.2, 110.9, 103.6, 82.6, 55.7 (2C), 52.6 (2C), 34.1, 29.9 ppm; IR (film): $\tilde{v}=2930$, 2831, 1502, 1483, 1461, 1439, 1415, 1382, 1281, 1261, 1241, 1176, 1123, 1076, 1055, 1028, 961, 888,

808, 610, $588 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 443 (11), 442 (56), 410 (27), 379 (34), 378 (100), 353 (38), 252 (19), 75 (44); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}$: 465.05333, found 465.5333.

Aldehyde S21. PPTS ($1.59 \mathrm{~g}, 6.33 \mathrm{mmol}$) was added to a solution of acetal $49(5.60 \mathrm{~g}, 12.7 \mathrm{mmol}) \mathrm{in}$
 acetone $/ \mathrm{H}_{2} \mathrm{O}$ ($110 \mathrm{~mL}, 10: 1$) and the resulting solution was stirred for 14 h at $50{ }^{\circ} \mathrm{C}$. The organic solvent was evaporated before $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added. The aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated to afford the product as a colorless foam (5.01 g , quant.). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.83(\mathrm{~s}, 1 \mathrm{H}), 7.60$ (dd, $\mathrm{J}=8.7$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), $6.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.79 \mathrm{ppm}(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=201.9,156.9,155.3,139.6,137.2,131.9,131.0,130.1,128.8,126.2$, 113.2, 111.1, 82.6, 55.8, 55.7, 45.4, 27.1 ppm ; IR (film): $\tilde{v}=2998,2935,2834,2721,1722,1608,1581$, 1502, 1484, 1462, 1439, 1415, 1383, 1263, 1243, 1178, 1135, 1028, 887, 809, 610, $587 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 397 (17), 396 (100), 353 (46), 340 (20); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}: 419.01146$, found 419.01123 .

Propargylic alcohol 50. Aldehyde $\mathbf{S 2 1}(5.01 \mathrm{~g}, 12.6 \mathrm{mmol})$ was dissolved in a solution of $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}(0.6 \mathrm{M}$
 in THF, $21.5 \mathrm{~mL}, 12.9 \mathrm{mmol}$) and the mixture was stirred for 1 h at room temperature. The solution was cooled to $0^{\circ} \mathrm{C}$ and propynyllithium (1.45 g , 31.6 mmol) was added in portions within 15 min at this temperature. After stirring for 2 h at $0^{\circ} \mathrm{C}$, the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ $(100 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$, the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 3:1) to yield the title compound as a colorless foam ($4.80 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta=7.60(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}$, $\left.3 \mathrm{H}), 2.76(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.87 \mathrm{ppm}(\mathrm{d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100MHz,CDCl}_{3}\right): \delta=$ 156.9, 155.0, 139.5, 137.1, 133.1, 131.1, 130.3, 128.8, 126.0, 113.2, 111.0, 82.5, 81.3, 80.1, 61.9, 55.7 (2C), 39.5, 30.4, 3.6 ppm ; IR (film): $\tilde{v}=3389,2935,2835,1501,1482,1461,1438,1414,1381,1261$, 1240, 1177, 1134, 1024, 907, 806, 728, 648, 610, 586, $501 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 437 (22), 436 (100), 354 (22), 353 (25), 340 (10); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{INa}[\mathrm{M}+\mathrm{Na}]^{+}$: 459.04276, found 459.04271.

Hept-5-yn-1-al (52). A 500 mL 2 -necked round bottom flask equipped with a reflux condenser was
 charged with hept-5-yn-1-ol (51) (3.81 g, 34.0 mmol) and MeCN (140 mL). $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}(535 \mathrm{mg}, 1.70 \mathrm{mmol}), 2,2^{\prime}$-bipyridine ($266 \mathrm{mg}, 1.70 \mathrm{mmol}$), TEMPO ($266 \mathrm{mg}, 1.70 \mathrm{mmol}$), and $\mathrm{NMI}(0.27 \mathrm{~mL}, 3.4 \mathrm{mmol})$ were successively added, the joint was rinsed with $\mathrm{MeCN}(30 \mathrm{~mL})$, closed with a rubber seal, and connected to an air-containing balloon. After stirring for 8 h at room temperature, $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and pentanes $(200 \mathrm{~mL})$ were added. The layers were separated, the aqueous layer was extracted with pentanes ($3 \times 200 \mathrm{~mL}, 4 \times 100 \mathrm{~mL}$) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Careful evaporation of the solvent yielded the product as a yellow liquid ($3.41 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.80(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dt}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H})$,
2.23-2.18 (tq, $J=7.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80$ (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.77 \mathrm{ppm}(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.1,77.9,76.7,42.8,21.5,18.2,3.4 \mathrm{ppm} ; \operatorname{IR}(f i l m): \tilde{v}=2921,2844,2724,1721,1437$, 1411, 1390, 1364, 1335, 1243, 1177, 1071, 1032, 925, 866, 795, $689 \mathrm{~cm}^{-1} ; \mathrm{MS}(E I): \mathrm{m} / \mathrm{z}(\%): 82(25), 68$ (100), 67 (12), 66 (65), 65 (20), 55 (17), 53 (42), 51 (14), 41 (30), 39 (32), 29 (11), 27 (28); HRMS (EI): m/z: calcd. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}]^{+}$: 110.07317, found 110.07307.
(S)-Dec-1-en-8-yn-4-amine hydrochloride (53). Preparation of the catalyst solution: A Schlenk tube was
 charged with (S)-VANOL ($507 \mathrm{mg}, 1.16 \mathrm{mmol}$), 2,4,6-trimethylphenol (315 mg , $2.31 \mathrm{mmol})$ and toluene (23.1 mL). $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(310 \mu \mathrm{~L}, 3.47 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(62.5$ $\mu \mathrm{L}, 3.47 \mathrm{mmol}$) were added and the solution was stirred for 1 h at $100^{\circ} \mathrm{C}$. The solvent was carefully evaporated by vacuum distillation at $100{ }^{\circ} \mathrm{C}$ and the residue was dried under vacuum for 30 min at this temperature. After the vessel had reached room temperature, the residue was dissolved in m-xylene (23.1 mL).

Aza-Cope rearrangement: A suspension containing amine 58 ($6.45 \mathrm{~g}, 23.1 \mathrm{mmol}$), ${ }^{13}$ activated molecular sieves ($5 \AA$ Å, powder, 11.3 g), the freshly prepared catalyst stock solution (0.05 M in m-xylene, 23.1 mL , $1.16 \mathrm{mmol})$ and m -xylene (80 mL) was stirred for 30 min at $60^{\circ} \mathrm{C}$. Next, hept-5-yn-1-al (52) (2.64 g, 24.0 mmol) and benzoic acid (0.1 M in m-xylene, $11.5 \mathrm{~mL}, 1.15 \mathrm{mmol}$) were added and the mixture was stirred for 15 h at this temperature. The suspension was filtered through a plug of Celite, eluting with EtOAc $(250 \mathrm{~mL})$. The solvent of the combined filtrates was evaporated (high vacuum) and the residue was dissolved in THF (275 mL). $\mathrm{HCl}(1 \mathrm{M}, 70.0 \mathrm{~mL}, 70.0 \mathrm{mmol}$) was added and the solution was stirred for 4 h at room temperature. $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added to the reaction and the aqueous layer was washed with EtOAc ($4 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{HCl}(1 \mathrm{M}, 50 \mathrm{~mL})$ and the aqueous extract was washed with EtOAc (50 mL). The solvent of the combined aqueous extracts was evaporated to yield the title compound as a yellow solid ($3.95 \mathrm{~g}, 91 \%$). $[\alpha]_{20}^{D}=+4.5^{\circ}$ (c = 1.00, $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, 1: 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\left(C D_{3}\right)_{2} \mathrm{SO}\right): \delta=8.13(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 5.80(\mathrm{ddt}, J=17.1,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.12(\mathrm{~m}, 2 \mathrm{H})$, 3.13 (quint, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.55(\mathrm{~m}$, $2 \mathrm{H}), 1.53-1.44 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta=133.0,119.0,78.8,76.2,49.7,36.3,30.9$, 24.1, 17.9, 3.2 ppm ; IR (film): $\tilde{v}=2916,2893,1601,1511,1461,1446,1434,1392,992,918,463,411$ cm^{-1}; MS (EI): m/z (\%): 110 (29), 94 (15), 93 (100), 91 (43), 77 (30), 70 (34), 65 (11), 56 (59), 53 (11), 43 (16), 42 (11), 41 (21), 39 (17); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}-\mathrm{Cl}]^{+}: 152.14337$, found 152.14344.
tert-Butyl (S)-dec-1-en-8-yn-4-ylcarbamate (S22). $\mathrm{Boc}_{2} \mathrm{O}(5.32 \mathrm{~mL}, 23.1 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(5.87 \mathrm{~mL}, 42.1$
 mmol) were added to a solution of (S)-dec-1-en-8-yn-4-amine hydrochloride (53) ($3.95 \mathrm{~g}, 21.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The suspension was stirred for 3.5 h at room temperature before the organic solvent was evaporated. The residue was purified by flash chromatography (hexanes/tert-butyl methyl ether, 10:1 $\rightarrow 5: 1$) to afford the product as a colorless liquid which was kept at $50{ }^{\circ} \mathrm{C}$ under high vacuum overnight to remove any remaining volatile materials $(4.71 \mathrm{~g}, 89 \%, 98 \% \mathrm{ee}$; determined by chiral GC-analysis: column: 25.0 m IVADEX 1/PS086 G 549, t_{R} (major enantiomer) $=72.92 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor enantiomer $\left.)=73.60 \mathrm{~min}\right) .[\alpha]_{20}^{D}=$ $-19.0^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.82-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~d}, \mathrm{~J}=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.43 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.5,134.4,117.6,79.0,78.8,75.8,49.7,39.6,33.8,28.4$ (3C), 25.4, 18.6,
3.4 ppm; IR (film): $\tilde{v}=3342,2977,2921,2862,1688,1642,1508,1440,1390,1365,1248,1170,1058$, 993, 915, $778 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 154 (100), 110 (13), 93 (31), 57 (70); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 274.17775$, found 274.17750.

Amino aldehyde 54. A solution of tert-butyl (S)-dec-1-en-8-yn-4-ylcarbamate (S22) (4.71 g, 18.7 mmol)
 and N -methylmorpholine- N -oxide (6.59 g , 56.2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(187 \mathrm{~mL})$ was treated with ozone at $0{ }^{\circ} \mathrm{C}$ until TLC showed full consumption of the starting material. The solution was purged with Argon for 5 min and the solvent was evaporated after the addition of silica. The residue was purified by flash chromatography (hexanes/EtOAc, 3:1) to yield the title compound as a colorless liquid ($3.63 \mathrm{~g}, 76 \%$). $[\alpha]_{20}^{D}=-16.2^{\circ}$ ($\mathrm{c}=$ $\left.1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.73(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.96(\mathrm{~m}$, $1 \mathrm{H}), 2.64-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.39 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=201.1,155.3,79.5,78.4,76.1,49.2,46.1,34.1,28.3(3 \mathrm{C}), 25.4,18.4,3.4 \mathrm{ppm} ;$ IR (film): $\tilde{v}=3341,2977,2922,1686,1513,1455,1391,1366,1294,1248,1165,1068,864,781 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 110 (13), 93 (11), 72 (16), 59 (14), 57 (100), 41 (16); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 276.15701$, found 276.15720.
β-Amino alcohol 56. Procedure A: Ethynylmagnesium bromide (0.5 M in THF, $143 \mathrm{~mL}, 71.6 \mathrm{mmol}$) was
 added within 15 min to a solution of amino aldehyde 54 ($3.63 \mathrm{~g}, 14.3 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(63 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After stirring for 2 h at $-78^{\circ} \mathrm{C}$ and for 1 h at room temperature the reaction was quenched with aq. sat. Rochelle salt (300 mL). The mixture was extracted with EtOAc $(3 \times 300 \mathrm{~mL})$, the combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and brine (100 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by flash chromatography (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone, $10: 10: 1 \rightarrow 5: 5: 1$) to yield the 8 -amino alcohol 55 and separately the title compound as colorless foam ($1.56 \mathrm{~g}, 39 \%$).

Procedure B: A Schlenk tube was charged with pre-dried LiCl (1.74 g, 41.1 mmol$)$ and then heated under vacuum (heatgun). After the vessel had reached room temperature, a solution of 8 -amino ketone S23 $(1.14 \mathrm{~g}, 4.11 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ was introduced and the mixture was sonicated in an ultrasonic bath for 15 min . The resulting suspension was cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{LiAlH}(\mathrm{OtBu})_{3}(1 \mathrm{M} \mathrm{in} \mathrm{THF}, 12.3 \mathrm{~mL}, 12.3$ mmol) was added at this temperature. Stirring was continued for 2 h at $0{ }^{\circ} \mathrm{C}$ before the reaction was quenched with aq. sat. Rochelle salt (300 mL). The aqueous layer was extracted with EtOAc ($3 \times 300 \mathrm{~mL}$), the combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and brine (100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. Purification of the crude material by flash chromatography (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone, $5: 5: 1$) furnished the title compound as colorless foam (1.06 g, 92\%). $[\alpha]_{20}^{D}=$ $-19.6^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.57-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-$ $3.78(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{ddd}, J=13.9,6.4$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.45 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.5,85.2,79.8,78.5,76.0,72.2,59.5,47.2,43.2,34.8,28.5$ (3C), 25.3, 18.5, $3.4 \mathrm{ppm} ;$ IR (film): $\tilde{v}=3343,3296,2975,2922,1686,1511,1455,1442,1392,1366,1290,1248,1166,1070$, 1049, 1028, 862, 803, 780, 733, $647 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 142 (16), 110 (14), 98 (32), 94811), 93 (19), 91 (13), 80 (12), 79 (14), 59 (22), 57 (100), 56 (17), 55 (15), 53 (17), 44 (21), 41 (29), 39 (11); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 302.17266$, found 302.17284
β-Amino alcohol 55. This compound was isolated as the minor product from the previous reaction

(procedure A, colorless foam, $1.32 \mathrm{~g}, 33 \%$). $[\alpha]_{20}^{D}=+1.0^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.49$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.40 (ddt, $J=10.3,4.8,2.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.33 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-$ $2.12(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{ddd}, \mathrm{J}=13.8,10.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.47(\mathrm{~m}, 5 \mathrm{H}), 1.42 \mathrm{ppm}(\mathrm{s}$, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.3,84.4,80.2,78.4,76.2,72.2,58.6,47.0,45.0,34.4,28.3$ (3C), 25.5, 18.5, 3.4 ppm; IR (film): $\tilde{v}=3298,2976,2921,1679,1509,1455,1439,1392,1366,1293,1247$, 1164, 1074, 1051, 1030, 864, 782, $651 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 178 (11) 154 (17), 142 (20), 124 (10), 111 (13), 110 (19), 108 (12), 98 (34), 93 (16), 57 (100), 41 (17); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 302.17266$, found 302.17268.

- Amino ketone S23. DMP ($3.00 \mathrm{~g}, 7.09 \mathrm{mmol}$) was added to a solution of 8 -amino alcohol 55 (1.32 g ,
 $4.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the solution was stirred for 1.5 h at room temperature. The reaction was quenched with aq. sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$, the mixture was stirred for another 15 min at room temperature and then extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 4:1) to afford the title compound as colorless foam ($1.14 \mathrm{~g}, 87 \%$). $[\alpha]_{20}^{D}=-3.9^{\circ}(\mathrm{c}=$ $\left.1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.73(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}), 2.88-$ $2.77(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{ddt}, J=6.6 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.42 \mathrm{ppm}$ $(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=185.4,155.2,81.3,79.4,79.2,78.56,76.1,50.1,47.1,33.6,28.3$ (3C), 25.5, 18.4, 3.5 ppm; IR (film): $\tilde{v}=3353,3263,2977,2922,2864,2092,1682,1506,1455,1392$, 1366, 1295, 1249, 1167, 1106, 1054, $863 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 122 (11), 110 (15), 96 (20), 57 (100), 41 (24); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 300.15701$, found 300.15700 .
β-Amino alcohol 57. Imidazole ($1.91 \mathrm{~g}, 28.1 \mathrm{mmol}$), DMAP ($229 \mathrm{mg}, 1.88 \mathrm{mmol}$) and TIPSCl (6.02 mL ,
 $28.1 \mathrm{mmol})$ were added to a solution of 8 -amino alcohol $57(2.62 \mathrm{~g}, 9.38$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(47 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 16 h at room temperature before the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. The crude product was purified by flash chromatography (hexanes/tert-butyl methyl ether, 20:1) to obtain the product as a colorless foam which was kept at $50^{\circ} \mathrm{C}$ under high vacuum overnight to remove any remaining volatile materials ($3.43 \mathrm{~g}, 84 \%$). $[\alpha]_{20}^{D}=-3.9^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.58-4.54(\mathrm{~m}, 2 \mathrm{H})$, 3.78-3.71 (m, 1H), $2.44(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.67-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.16-1.10(\mathrm{~m}, 3 \mathrm{H}), 1.07 \mathrm{ppm}(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=155.3,85.1,78.8$ (2C), 75.8, 72.9, 61.1, 48.0, 44.4, 34.8, 28.4 (3C), 25.4, 18.6, 18.2 (6C), 12.2 (3C), 3.5 ppm ; IR (film): $\tilde{v}=3311,2943,2866,1702,1502,1460,1389,1365,1246,1170,1095,1062$, 882, 780, 682, $656 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 142(16), 110 (14), 98 (32), 94 (11), 93 (19), 91 (13), 80 (12), 79 (14), 59 (22), 57 (100), 56 (17), 55 (15), 53 (17), 44 (21), 41 (29), 39 (11); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{NO}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 458.30609$, found 458.30594 .

Triyne 59. NEt_{3} (degassed, $5.49 \mathrm{~mL}, 39.4 \mathrm{mmol}$) was added to a Schlenk tube charged with $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}$
 ($276 \mathrm{mg}, 0.394 \mathrm{mmol}$), Cul ($150 \mathrm{mg}, 0.787 \mathrm{mmol}$) and a solution of iodide 50 ($3.78 \mathrm{~g}, 8.66 \mathrm{mmol}$) and alkyne 57 ($3.43 \mathrm{~g}, 7.87 \mathrm{mmol}$) in DMF (degassed, 50 mL). The resulting red solution was stirred for 2 h at room temperature before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ (250 $\mathrm{mL})$. The mixture was extracted with EtOAc ($3 \times 350 \mathrm{~mL}$), the combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and brine (100 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by flash chromatography (hexanes/tert-butyl methyl ether, $1: 1$) to afford the product as a yellow foam ($4.02 \mathrm{~g}, 69 \%$). $[\alpha]_{20}^{D}=-6.7^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.39 (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}) 7.06(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.76(\mathrm{~m}$, 1 H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-213(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~J}=2.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.23-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.11 \mathrm{ppm}(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}$, 18 H), OH not detected; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.1,155.3$ (2C), 134.5, 133.1, 132.1, 131.4, $128.6,128.0,126.7,114.8,111.1,110.8,89.2,84.8,81.2,80.2,78.9,78.7,75.7,62.0,61.6,55.8,55.7$, $48.4,43.6,39.7,34.5,30.5,28.3$ (3C), 25.4, 18.7, 18.1 (6C), 12.3 (3C), 3.5, 3.4 ppm; IR (film): $\tilde{v}=3421$, 2942, 2865, 1697, 1499, 1461, 1390, 1365, 1285, 1243, 1168, 1052, 1026, 910, 883, 812, 732, 682, 649, $505 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 644 (32), 643 (80), 642 (100), 627 (10), 626 (29), 534 (14), 533 (19), 519 (11), 518 (10), 453 (10), 452 (22), 381 (15), 279 (24), 277 (11), 266 (14), 154 (14), 131 (15), 110 (14), 103 (15), 93 (16), 75 (11), 59 (15), 57 (14); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{45} \mathrm{H}_{65} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 766.44734, found 766.44719.

Cyclodiyne 60. A suspension of ligand 11b ($312 \mathrm{mg}, 0.353 \mathrm{mmol}$) and activated molecular sieves ($5 \AA$,
 powder, 1.5 g) in toluene (15 mL) was stirred for 30 min before a solution of the molybdenum complex 3 ($235 \mathrm{mg}, 0.353 \mathrm{mmol}$) in toluene (15 mL) was added. The suspension was stirred for 30 min before it was added to a suspension of triyne $59(1.75 \mathrm{~g}, 2.35 \mathrm{mmol})$ and activated molecular sieves $\left(5 \AA\right.$, powder, 2.35 g) in toluene (1.18 L) at $120^{\circ} \mathrm{C}$. After stirring for 15 min at this temperature the mixture was allowed to cool to room temperature and was subsequently filtered through a plug of silica, eluting with EtOAc (1 L). The solvent of the combined filtrates was evaporated and the residue was purified by flash chromatography (hexanes/tert-butyl methyl ether, $3: 2$) to yield the title compound as a white solid ($1.06 \mathrm{~g}, 65 \%$). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra show 4 sets of signals, indicating that two diastereomers exist in solution, as two conformers each. $[\alpha]_{20}^{D}=-30.4^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):^{14}$ Mixture of conformers: $\delta=7.31-7.22(\mathrm{~m}$, 2H), 7.16-6.99 (m, 2H), 6.84-6.79 (m, 2H), 5.08 (d, $J=8.9 \mathrm{~Hz}, 0.3 \mathrm{H}$), 4.80 (dd, $J=8.8,2.5 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.66$ $(\mathrm{dd}, J=10.3,3.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.47(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.02-3.97(\mathrm{~m}, 0.7 \mathrm{H}), 3.86-3.82(\mathrm{~m}, 0.3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 3.73-3.65 (m, 1H), 3.71 (s, 3H), 2.83-2.61 (m, 2H), 2.33-2.23 (m, 1H), 2.17-2.11 (m, 1H), 2.07-1.96 (m, 2H), 1.94-1.83 (m, 2H), 1.75-1.67 (m, 2H), 1.65-1.55 (m, 2H), 1.35-1.33 (m, 9H), 1.19-1.12 (m, 3H), 1.09-1.00 $\mathrm{ppm}(\mathrm{m}, 18 \mathrm{H})$, OH not detected; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{15}$ Mixture of conformers: $\delta=157.3,157.2$, 155.5 (2C), 155.4 (2C), 135.6 (2C), 133.3, 132.6, 132.5 (2C), 131.9, 130.7, 128.9 (2C), 128.5, 128.3, 128.2,
126.7, 115.1, 115.0, 111.4, 111.3, 110.7, 110.6, 89.5, 89.1, 86.3 (2C), 85.0, 84.7, 81.4, 80.4, 79.0 (2C), $63.1,62.2,62.0,61.9,61.5(2 \mathrm{C}), 55.9,55.8,55.7$ (2C), 48.7, 48.0, 45.0, 41.0, 37.8, 37.3, 34.9, 33.3, 30.6, 30.5, 28.4 (3C), 28.3 (3C), 25.9, 25.1, 18.0 (12C), 12.1 (6C) ppm; IR (film): $\tilde{v}=3402,2942,2865,1696$, 1603, 1502, 1461, 1391, 1366, 1285, 1265, 1246, 1169, 1130, 1060, 1030, 910, 883, 813, 732, 685, 648 cm^{-1}; MS (EI): m/z (\%): 632 (12), 590 (25), 589 (57), 588 (100), 571 (13), HRMS (ESI): m/z: calcd. for $\mathrm{C}_{41} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 712.40039$, found 712.39998 .

Enone 61. A solution of $\left[\mathrm{CpRu}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(1.0 \mathrm{mg}, 2.3 \mu \mathrm{~mol})$ and $\mathrm{PCy}_{3}(0.65 \mathrm{mg}, 2.3 \mu \mathrm{~mol})$ in THF $(0.5$
 mL) was added to a solution of propargylic alcohol $60(13.0 \mathrm{mg}, 18.8 \mu \mathrm{~mol})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.38 \mathrm{mg}, 2.3 \mu \mathrm{~mol})$ in THF $(0.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$. After stirring for 1 h at this temperature, the mixture was filtered through a plug of silica, rinsing with EtOAc (5 mL). The solvent of the combined filtrates was evaporated and the crude product purified by flash chromatography (hexanes/EtOAc, 3:1) to afford the title compound as a white-yellow solid ($9.5 \mathrm{mg}, 74 \%, 1: 1$ mixture of conformers). $[\alpha]_{20}^{D}=-14.4^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right){ }^{14} 14$ oben Mixture of conformers: $\delta=7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.11(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.00(\mathrm{~d}, J$ $=2.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.99(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.89-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.11(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.01(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $0.5 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.84(\mathrm{dd}, \mathrm{J}=9.1,2.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.81-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.78$ $(\mathrm{s}, 1.5 \mathrm{H}), 3.77(\mathrm{~s}, 1.5 \mathrm{H}), 3.73(\mathrm{~s}, 1.5 \mathrm{H}), 3.72(\mathrm{~s}, 1.5 \mathrm{H}), 3.09-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 0.5 \mathrm{H}), 2.60-2.54(\mathrm{~m}$, $0.5 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 4.5 \mathrm{H}), 1.40(\mathrm{~s}$, $4.5 \mathrm{H}), 1.24-1.08 \mathrm{ppm}(\mathrm{m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }^{15}$ Mixture of conformers: $\delta=201.5,201.2$, $157.3,157.2,155.5$ (2C), 155.4, 155.3, 147.9, 147.6, 134.6, 134.5, 132.3, 132.2 (2C), 131.6, 131.5, 130.8, $130.2,130.0,129.6,129.3,128.6,128.5,127.1,126.9,114.9,114.8,111.1,110.8,110.6$ (2C), 89.5, 89.4, $84.6,84.5,79.0,78.9,62.1,62.0,55.8$ (2C), 55.7 (2C), 48.7, 48.1, 43.5, 42.5, 40.0, 39.6, 35.1, 34.9, 32.1 (2C), 30.7, 30.4, 28.4 (3C), 28.3 (3C), 25.5, 25.4, 18.0 (12C), 12.1 (6 C) ppm; IR (film): $\tilde{v}=3349,2941$, 2865, 1702, 1666, 1623, 1502, 1462, 1390, 1365, 1287, 1265, 1246, 1172, 1132, 1086, 1054, 1036, 883, 813, 733, $684 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 633 (10), 632 (14), 591 (12), 590 (39), 589 (89), 588 (100), 574 (12), 573 (18), 572 (42), 571 (14), 547 (11), 546 (22), 502 (19), 416 (19), 295 (11), 279 (28), 277 (39), 252 (13), 251 (43), 174 (14), 115 (11), 87 (11), 75 (14), 73 (12), 59 (18), 57 (31); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{41} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 712.40039$, found 712.39987 .

Enone 62. AcOH ($3.11 \mu \mathrm{~L}, 54.3 \mu \mathrm{~mol}$) and TBAF (1 m in THF, $54.3 \mu \mathrm{~L}, 54.3 \mu \mathrm{~mol}$) were added to a solution

of compound $61(35.7 \mathrm{mg}, 51.7 \mu \mathrm{~mol})$ in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 15 h at room temperature. For work up, silica was added and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 2:1) yielded the title compound as a white solid (27.9 mg , $99 \%, 1: 1$ mixture of conformers). $[\alpha]_{20}^{D}=+7.8^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400$
$\mathrm{MHz}, \mathrm{CDCl}_{3}:^{14}$ Mixture of conformers: $\delta=7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.4$, $2.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.12(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.05(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.91-6.71$ $(\mathrm{m}, 4 \mathrm{H}), 6.16(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.99(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.70-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.60(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $0.5 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1.5 \mathrm{H}), 3.77(\mathrm{~s}, 1.5 \mathrm{H}), 3.73(\mathrm{~s}, 1.5 \mathrm{H}), 3.72(\mathrm{~s}$, $1.5 \mathrm{H}), 3.13-2.94(\mathrm{~m}, 3 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.64-$
$1.52(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 4.5 \mathrm{H}), 1.39 \mathrm{ppm}(\mathrm{s}, 4.5 \mathrm{H})$, OH not detected; ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right){ }^{15}$ Mixture of conformers: $\delta=201.4,200.6,157.6,157.5,155.5$ (4C), 147.3 (2C), 135.2, 135.0, 132.5, 132.3, 132.2, $131.7,131.6,130.6,130.0,129.8,129.7,129.4,128.8,128.7,127.2,127.0,114.3$ (2C), 111.2, 110.8, 110.6 (2C), 88.8, 88.7, 85.4 (2C), 79.4, 79.3, 61.2 (2C), 55.8, 55.7 (3C), 48.2, 47.9, 43.4, 43.2, 40.1, 40.0, 35.1, 35.0, 31.9, 31.8, 30.7, 29.6, 28.3 (6C), 25.2, 25.1 ppm; IR (film): $\tilde{v}=3367,3008,2934,2860,1690,1621$, 1503, 1458, 1440, 1392, 1366, 1286, 1266, 1246, 1170, 1132, 1028, 816, $755 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 434 (26), 433 (100), 432 (92), 418 (10), 416 (25), 390 (17), 350 (14), 294 (13), 293 (27), 279 (24), 277 (13), 251 (25), 182 (20), 138 (12), 137 (11), 96 (11), 57 (36), 56 (10), 41 (10); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 556.26696$, found 556.26719 .

Macrocycle 63 - Diastereomer A. AcOH ($92.3 \mu \mathrm{~L}, 1.61 \mathrm{mmol}$) and TBAF ($1 \mathrm{~m} \mathrm{in} \mathrm{THF} 1.61 \mathrm{~mL},, 1.61 \mathrm{mmol}$)
 were added to a solution of compound $61(1.06 \mathrm{~g}, 1.53 \mathrm{mmol})$ in THF (45 mL) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred for 13 h at room temperature. For work up, silica was added and the solvent was evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 1:2) yielded the title compound as a white solid ($808 \mathrm{mg}, 99 \%$).

For analytical purposes the diastereomeric mixture was partly separated by flash chromatography (hexanes/EtOAc, 2:3), affording diastereomer A (as a 3:1 mixture of conformers) and diastereomer B ; a finite assignment of the stereochemistry has not been made. $[\alpha]_{20}^{D}=+98.2^{\circ}(\mathrm{c}=$ $\left.1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Mixture of conformers: $\delta=7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 2 \mathrm{H})$, 6.89-6.86 (m, 2H), 4.75-4.69 (m, 1H), 4.65 (d, J = 8.9 Hz, 0.75 Hz), 4.55-4.52 (m, 0.5H), 4.16 (t, J = 7.4 Hz, 0.75 H), 3.94-3.89 (m, 0.75H), 3.83 (s, 3H), 3.80-3.75 (m, 0.25H), 3.79 (s, 2.25H), 3.77 (s, 0.75H), 3.61 (br s, $0.5 \mathrm{H}), 3.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 0.75 \mathrm{H}), 3.23(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 0.75 \mathrm{H}), 2.69-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 0.75 \mathrm{H}), 2.33-$ $2.20(\mathrm{~m}, 1.25 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 6.75 \mathrm{H}), 1.25 \mathrm{ppm}(\mathrm{s}$, 2.25 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Major conformer: $\delta=157.2,156.1,155.3,136.6,132.6,132.3,130.5$, $128.9,128.2,126.7,114.7,111.2,110.6,88.9,85.3,85.1,82.5,79.8,60.9,60.4,55.8,55.7,47.7,41.9$, 37.4, 32.7, 30.2, 28.3 (3C), 24.0, 17.4 ppm; Minor conformer: $\delta=157.3,156.4,155.5,137.4,133.7,132.5$, $131.5,128.9,128.5,127.3,114.5,111.2,110.6,89.6,85.7,84.5,81.5,80.0,62.5,60.2,55.8,55.7,47.5$, 43.3, 39.6, 34.4, 30.5, 28.0 (3C), 25.2, 18.5 ppm; IR (film): $\tilde{v}=3368,2935,2861,1686,1602,1502,1456$, 1440, 1393, 1366, 1265, 1245, 1168, 1130, 1065, 1027, 898, 815, $736 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 434 (26), 433 (95), 432 (63), 416 (35), 415 (74), 414 (100), 400 (21), 398 (20), 384 (13), 371 (19), 367 (11), 306 (13), 294 (14), 293 (24), 279 (21), 277 (12), 252 (14), 251 (26), 57 (20); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 556.26696$, found 556.26718.

Macrocycle 63 - Diastereomer B. This compound was isolated as a 4.5:1 mixture of conformers. [$[\alpha]_{20}^{D}=$ $-87.5^{\circ}\left(\mathrm{c}=0.88, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: Major conformer: $\delta=7.39(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=10.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, 3 H), 3.79-3.74 (m, 1H), 3.77 (s, 3H), 2.87-2.80 (m, 1H), 2.79-2.71 (m, 1H), 2.34-2.23 (m, 2H), 2.14-2.06 (m, $2 \mathrm{H})$, 2.03-1.92 (m, 4H), 1.83-1.79 (m, 1H), 1.73-1.56 (m, 3H), $\left.1.24 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(150} \mathrm{MHz} \mathrm{CDCl},\right)_{3}$: Major conformer: $\delta=157.4,155.9,155.4,136.4,132.4,132.0,131.8,128.5$ (2C), 126.8, 114.4, 111.3, $110.5,89.1,86.0,85.0,80.9,79.6,61.1,60.7,55.9,55.7,47.6,44.0,38.0,34.5,30.2,28.1$ (3C), 25.3, 18.4
ppm; IR (film): $\tilde{v}=3350,2930,2859,1686,1603,1502,1456,1440,1392,1366,1265,1245,1168,1130$, 1067, 1027, 896, 815, $735 \mathrm{~cm}^{-1}$; MS (pos. ESI): $m / z(\%): 1089.5$ (38), 556.3 (100); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 556.26696$, found 556.26748.

Dienone 64. Single redox isomerization: A solution of $\left[\mathrm{CpRu}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(10.5 \mathrm{mg}, 24.3 \mu \mathrm{~mol})$ and phosphine $\mathbf{S 2 4}(7.34 \mathrm{mg}, 24.3 \mu \mathrm{~mol})$ in THF (1 mL) was added to a solution of
 propargylic alcohol $62(86.4 \mathrm{mg}, 0.162 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}(3.99 \mathrm{mg}, 24.3 \mu \mathrm{~mol})$ in THF (2.2 mL) at $80^{\circ} \mathrm{C}$. After stirring for 1 h at this temperature, silica was added and the solvent was evaporated. The crude material was purified by flash chromatography (hexanes/EtOAc, 1:1) to afford the title compound as a pale yellow foam ($43.9 \mathrm{mg}, 51 \%, 55 \%$ brsm, 2:1 mixture of conformers).

Double redox isomerization: A solution of compound 63 ($460 \mathrm{mg}, 0.862 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{PF}_{6}(56.2 \mathrm{mg}$, $0.345 \mathrm{mmol})$ in THF (2.6 mL) were added within 1 h to a solution of $\left[\mathrm{CpRu}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(74.9 \mathrm{mg}, 0.172$ $\mathrm{mmol})$ and phosphine $\mathbf{S} 24(52.1 \mathrm{mg}, 0.172 \mathrm{mmol})$ in THF (3 mL) at $80^{\circ} \mathrm{C}$. After stirring for 9 h at this temperature, silica was added and the solvent was evaporated. The crude material was purified by flash chromatography (hexanes/tert-butyl methyl ether, 2:3, Merck silica gel $60(15-40 \mu \mathrm{~m})$) to afford the title compound as a white-brown foam ($218 \mathrm{mg}, 47 \%$, 2:1 mixture of conformers). $[\alpha]_{20}^{D}=+5.9^{\circ}$ (c $=1.00$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right):{ }^{16}$ Major conformer: $\delta=7.45(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.90(\mathrm{~m}$, 1 H), $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.06$ (ddd, $J=15.2,10.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.69$ (ddd, J = 16.3, 10.0, $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56 (dd, $J=13.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (ddd, $J=16.3,7.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.22(\mathrm{dd}, J=13.5,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~m}, 1 \mathrm{H}), 1.04 \mathrm{ppm}$ $(\mathrm{m}, 1 \mathrm{H})$; Minor conformer: $\delta=7.41(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~m}, 1 \mathrm{H}), 6.60$ $(\mathrm{m}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dt}, J=15.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.84$ $(\mathrm{m}, 1 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 2 \mathrm{H}) 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~m}, 1 \mathrm{H})$, $1.12 \mathrm{ppm}(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$): Major conformer: $\delta=199.3,197.6,160.1,156.1,155.3$, $146.3,143.4,133.2,131.2,130.6$ (2C), 130.3, 129.9, 129.7, 128.1, 127.3, 125.2, 111.1, 110.9, 78.6, 55.2 (2C), 49.3, 42.5, 39.4, 34.7, 32.3, 28.6, 28.5 (3C), 25.7 ppm; Minor conformer: $\delta=198.0,196.9,159.9$, $156.1,155.1,146.0,142.7,133.2,132.2,131.0,130.4,130.2,129.8,129.7,128.3,127.4,124.2,111.1$, 111.0, 78.8, 55.2 (2C), 48.8, 46.2, 39.5, 35.2, 32.1, 28.9, 28.4 (3C), 24.4 ppm ; IR (film): $\tilde{v}=3359,2930$, 2859, 1697, 1624, 1591, 1501, 1461, 1440, 1365, 1270, 1249, 1169, 1131, 1086, 1029, 981, 910, 811, 731 cm^{-1}; MS (EI): m/z (\%): 534 (17) 533 (47), 479 (12), 478 (25), 477 (73), 476 (30), 461 (11), 460 (28), 459 (36), 434 (30), 433 (80), 432 (53), 418 (14), 417 (23), 416 (65), 415 (14), 405 (24), 391 (12), 390 (38), 388 (14), 374 (11), 321 (10), 309 (17), 308 (21), 307 (14), 297 (14), 296 (11), 295 (34), 294 (25), 293 (54), 281 (18), 280 (25), 279 (94), 278 (33), 277 (67), 276 (19), 275 (10), 267 (20), 266 (18), 265 (21), 263 (17), 262 (25), 261 (20), 255 (10), 254 (17), 253 (59), 251 (21), 249 (11), 240 (11), 239 (10), 237 (14), 235 (12), 233 (11), 201 (10), 199 (14), 183 (22), 152 (15), 149 (14), 138 (23), 124 (25), 111 (17), 110 (19), 109 (10), 98 (13), 97 (26), 96 (53), 95 (15), 85 (11), 83 (13), 82 (13), 81 (17), 71 (15), 70 (15), 69 (11), 59 (23), 57 (100), 56 (24); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 556.26696, found 556.26728.

Piperidine 65. TFA ($0.286 \mathrm{~mL}, 3.74 \mathrm{mmol}$) was added to a solution of dienone $64(50.0 \mathrm{mg}, 93.7 \mu \mathrm{~mol})$ in
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.67 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the solution was stirred for 1.5 h at this temperature. After removal of the solvent at $0{ }^{\circ} \mathrm{C}$ and coevaporation with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, the resulting yellow foam was dried in vacuum for 30 min . Next, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and a solution of DBU ($21.0 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ mL) was added at $-78{ }^{\circ} \mathrm{C}$. The reaction was stirred for 2 h at this temperature and quenched with phosphate buffer ($\mathrm{pH}=7,0.1 \mathrm{~m}$ aq. solution, 5 mL). The aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 2:5 + 1 vol. $\% \mathrm{NEt}_{3}$) to yield the title compound as a white solid ($29.7 \mathrm{mg}, 73 \%, 1.1: 1$ mixture of conformers) and separately 9-epi-65. $[\alpha]_{20}^{D}=-51.4^{\circ}\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): ${ }^{16}$ Major conformer: $\delta=7.66(\mathrm{~d}, \mathrm{~J}=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{dd}, \mathrm{J}=8.4$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.03$ (ddd, J = 13.8, $10.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.85(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=14.0,7.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (dd, $J=13.7,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{dd}, \mathrm{J}=18.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, \mathrm{J}=18.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.49$ $(\mathrm{m}, 1 \mathrm{H}), 1.29(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~m}, 1 \mathrm{H}), 0.68-0.61 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H})$, NH not detected; Minor conformer: $\delta=7.59(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~m}, 1 \mathrm{H}), 6.97$ (dd, J=8.4, 2.3 Hz, 1H), $6.93(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}$, 6 H), 2.91-2.87 (m, 1H), $2.62(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.47$ (ddd, $\mathrm{J}=17.1,9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dd, J=14.9, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H})$, $1.29(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.93(\mathrm{~m}, 1 \mathrm{H}), 0.74-0.68 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H})$, NH not detected; ${ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): Major conformer: $\delta=209.1,198.9,159.4,156.2,139.9,134.3,133.0,131.6,130.9,129.9$, 128.9, 128.8, 128.5, 125.7, 111.4, 110.9, 55.6, 55.5, 55.2, 52.3, 52.1, 52.0, 44.5, 33.8, 32.7, 29.6, 25.0 ppm; Minor conformer: $\delta=209.0,198.9,159.4,156.0,138.4,132.6,131.8,131.3,130.5,130.1,129.3$, $128.5,128.3,125.5,111.8,111.0,55.7,55.6,54.6,52.8,51.0,49.9,42.6,32.6,32.3,28.0,24.9 \mathrm{ppm} ; \mathrm{IR}$ (film): $\tilde{v}=2926,2849,1709,1677,1592,1501,1461,1439,1336,1269,1249,1166,1131,1030,812$, $734 \mathrm{~cm}^{-1}$; MS (pos. ESI): m / z (\%): 434 (30), 433 (100), 432 (10), 405 (20), 375 (20), 374 (68), 279 (12), 111 (17), 110 (15), 96 (33), 82 (28); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 456.21453, found 456.21493.

Piperidine 9-epi-65. This compound was isolated from the previous reaction as a white solid ($3.2 \mathrm{mg}, 8 \%$, 2:1 mixture of conformers). $[\alpha]_{20}^{D}=+8.9^{\circ}\left(c=0.62, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):{ }^{16}$ Major conformer: $\delta=7.57(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, 3 H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{tt}, J=9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{ddt}, J=12.0,4.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 3.18$ (ddd, $J=17.0,12.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.89-2.85 (m, 1H), $2.78(\mathrm{dd}, \mathrm{J}=19.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.53$ (ddd, $J=$ $17.0,4.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, \mathrm{J}=12.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.47$ $(\mathrm{m}, 1 \mathrm{H}), 1.03 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H})$, NH not detected; Minor conformer: $\delta=7.61(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~m}$, 1H), $3.27(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{dd}, \mathrm{J}=18.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, \mathrm{J}=$
13.2, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.08 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H})$, NH not detected; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Major conformer: $\delta=207.3,200.9,159.4,155.3,140.5,132.6$, $131.8,129.9,129.8,129.4,128.7,127.2,127.1,123.2,111.9,110.9,55.9,55.8,52.3,51.1,46.0,45.1$, 39.8, 32.1, 31.9, 26.7, 19.8 ppm; Minor conformer: $\delta=209.4,200.5,159.2,155.6,140.7,134.6,132.1$, $131.2,130.6,129.1,128.9,128.0(2 C), 125.0,111.3,110.8,55.8$ (2C), 52.1, 51.0, 46.6, 45.1, 44.9, 32.7, 32.5, 29.3, 19.7 ppm ; IR (film): $\tilde{v}=2927,2854,1712,1676,1591,1501,1461,1439,1336,1270,1132$, 1029, 812, $753 \mathrm{~cm}^{-1}$; MS (pos. ESI): m/z (\%): 434 (31), 433 (100), 432 (11), 405 (22), 377 (12), 375 (21), 374 (72), 279 (17), 253 (10), 251 (10), 152 (11), 138 (18), 111 (31), 110 (28), 97 (25), 96 (75), 95 (12), 94 (14), 84 (12), 83 (18), 82 (80), 81 (13), 80 (10); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 434.23258$, found 434.23280 .

Phosphine S24. ${ }^{17}$ A Schlenk tube was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($113 \mathrm{mg}, 0.504 \mathrm{mmol}$), di-iso-
 propylphosphinoferrocene ($253 \mathrm{mg}, 0.605 \mathrm{mmol}$) and $\mathrm{NaOtBu}(2.91 \mathrm{~g}, 30.3 \mathrm{mmol}$) and the vessel was evacuated and backfilled with Argon three times. Toluene (25 mL) was added and the mixture was stirred for 30 min at room temperature before 1-bromo-3,5dimethylbenzene ($4.67 \mathrm{~g}, 25.2 \mathrm{mmol}$) and dicyclohexylphosphine ($5.10 \mathrm{~mL}, 25.2 \mathrm{mmol}$) were added. The solution was stirred for 15 h at $80^{\circ} \mathrm{C}$ and was subsequently filtered through a plug of Celite, eluting with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The solvent of the combined filtrates was evaporated and the residue was purified by flash chromatography (hexanes/tert-butyl methyl ether, 20:1) to afford a mixture of the title compound and the corresponding phosphine oxide. This mixture was dissolved in toluene (50 mL). NEt_{3} ($17.2 \mathrm{~mL}, 123 \mathrm{mmol}$) followed by $\mathrm{Cl}_{3} \mathrm{SiH}(3.79 \mathrm{~mL}, 37.6 \mathrm{mmol})$ were added and stirring continued for 15 h at $110{ }^{\circ} \mathrm{C}$. The black solution was allowed to reach room temperature before $\mathrm{Et}_{2} \mathrm{O}$ (degassed, 200 mL) and NaOH (degassed, $2 \mathrm{~N}, 200 \mathrm{~mL}$) were added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$, the combined extracts were washed with aq. sat. NaHCO_{3} (degassed, 200 mL), $\mathrm{H}_{2} \mathrm{O}$ (degassed, 200 mL) and brine (degassed, 200 mL). After drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed to afford the product as a white solid ($4.72 \mathrm{~g}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.06(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, $6 \mathrm{H}), 1.91-1.75(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.37-0.98 \mathrm{ppm}(\mathrm{m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.0$ (d, J=7.4 Hz, 2C), 134.1 (d, $J=16.4 \mathrm{~Hz}$), 132.4 (d, $J=19.2 \mathrm{~Hz}, 2 \mathrm{C}), 130.5,32.5(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 2 \mathrm{C}), 30.0(\mathrm{~d}$, $J=16.1 \mathrm{~Hz}, 2 \mathrm{C}), 28.9(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{C}), 27.2(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{C}), 27.0(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{C}), 26.4(2 \mathrm{C}), 21.4$ ppm (2C); ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl $): \delta=3.0 \mathrm{ppm}$; IR (film): $\tilde{v}=2922,2849,1447,848,694 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 302 (39), 247 (14), 221 (19), 220 (100), 139 (14), 138 (46), 137 (17); HRMS (EI): m/z: calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{P}[\mathrm{M}]^{+}: 302.21634$, found 302.21648 .

Figure S-1. Structure of compound 11b in the solid state (CCDC deposition number 1469817)

Table S-3. Crystal data and structure refinement.

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
$\mathrm{C}_{57} \mathrm{H}_{66} \mathrm{O}_{3} \mathrm{Si}_{3}$
colourless
$883.36 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
180 K
$0.71073 \AA$
monoclinic
$P 2_{1} /$ n, (no. 14)
$\begin{array}{ll}\mathrm{a}=15.175(4) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=19.071(5) \AA & \beta=95.910(5)^{\circ} . \\ \mathrm{c}=22.799(6) \AA & \gamma=90^{\circ} .\end{array}$

Volume	6563(3) \AA^{3}
Z	4
Density (calculated)	0.894 Mg. ${ }^{-3}$
Absorption coefficient	$0.105 \mathrm{~mm}^{-1}$
F(000)	1896 e
Crystal size	$0.187 \times 0.110 \times 0.067 \mathrm{~mm}^{3}$
θ range for data collection	2.728 to 26.372°.
Index ranges	$-18 \leq \mathrm{h} \leq 18,-23 \leq \mathrm{k} \leq 23,-28 \leq 1 \leq 28$
Reflections collected	133780
Independent reflections	$13393\left[\mathrm{R}_{\mathrm{int}}=0.1537\right]$
Reflections with $\mathrm{I}>2 \sigma$ (I$)$	6269
Completeness to $\theta=25.242^{\circ}$	99.9 \%
Absorption correction	Gaussian
Max. and min. transmission	0.98508 and 0.96520
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	13393 / 0 / 574
Goodness-of-fit on F^{2}	0.999
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0599 \quad \mathrm{wR}^{2}=0.1462$
R indices (all data)	$\mathrm{R}_{1}=0.1475 \quad \mathrm{wR}^{2}=0.1947$
Extinction coefficient	0
Largest diff. peak and hole	0.344 and -0.270 e \AA^{-3}
PLATON squeeze void / electrons	$2049 \AA^{3} / 639$ e (probe rad. 1.2 Å, ca. grid $0.3 \AA$)

References

A. Ochida, G. Hamasaka, Y. Yamauchi, S. Kawamorita, N. Oshima, K. Hara, H. Ohmiya, M. Sawamura, Organometallics 2008, 27, 5494-5503.
J.-D. A. K. Twibanire, H. Al-Mughaid, T. B. Grindley, Tetrahedron 2010, 66, 9602-9609.
S. V. Kolotuchin, P. A. Thiessen, E. E. Fenlon, S. R. Wilson, C. J. Loweth, S. C. Zimmerman, Chem. Eur. J. 1999, 5, 2537-2547
E. K. Yum, J. W. Son, S. K. Kim, S. N. Kim, K. M. Kim, C. W. Lee, Bull. Korean Chem. Soc. 2010, 31, 2097-2099.
N. G. Pschirer, U. H. F. Bunz, Tetrahedron Letters 1999, 40, 2481-2484.
a) S. Protti, M. Fagnoni, A. Albini, Angew. Chem. Int. Ed. 2005, 44, 5675-5678; b) R. Chandra, S. Oya, M.-P. Kung, C. Hou, L.-W. Jin, H. F. Kung, J. Med. Chem. 2007, 50, 2415-2423; c) D. Nishimura, Y. Takashima, H. Aoki, T. Takahashi, H. Yamaguchi, S. Ito, A. Harada, Angew. Chem. Int. Ed. 2008, 47, 6077-6079; d) A. Hofmann, P. Schmiel, B. Stein, C. Graf, Langmuir 2011, 27, 15165-15175.
T. Inokuchi, S. Matsumoto, S. Torii, J. Org. Chem. 1991, 56, 2416-2421.
H. Fujioka, T. Okitsu, Y. Sawama, N. Murata, R. Li, Y. Kita J. Am. Chem. Soc. 2006, 128, 5930-5938; M. J. Cryle, P. R. Ortiz de Montellano, J. J. de Voss J. Org. Chem. 2005, 70, 2455-2469. The by-product 1,1,12,12tetramethoxydodecane could be recovered after protection and/or after Grignard addition and converted to aldehyde $\$ \mathbf{1 1}$ by treatment with $\mathrm{HCl}(1 \mathrm{M})$ in THF at ambient temperature for 6 h .
P. Wipf, S. Lim, Angew. Chem. Int. Ed. 1993, 32, 1068.
G. Rücker, C.W. Ming, R. Mayer, G. Will, A. Güllmann, Phytochemistry 1990, 29, 983-985.
C. Curti, F. Zanardi, L. Battistini, A. Sartori, G. Rassu, L. Pinna, G. Casiraghi, J. Org. Chem. 2006, 71, 85528558.
T. R Hoye, C. S. Jeffrey, F. Shao Nature Protocols. 2007, 2, 2451-2457.
H. Ren, W. D. Wulff, J. Am. Chem. Soc. 2011, 133, 5656-5659.

The sum of all signals is given.
All visible signals are listed.
Data for both conformers could be separated; in case of overlapping multiplets, their center is given instead of the whole area.
M. Murata, S. L. Buchwald, Tetrahedron 2004, 60, 7397-7403.

(2)

1																			
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

	18		16			130			10	90		70	60			1	1			
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

(

1	1	,	1	1	T			1	+	,	1	1	1	1	1	1	T	1	1	,
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$\underbrace{\text { On }}$

| 19 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

(

85.87
-85.64

Nic ion

TES

T	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											f1 (ppm)											


```
元,
```

Diastereomer 1

	1	1	1	1	1	1				1	1	1	1	1									
220	210	200	190	180	170	160	150	140	130	120	${ }_{f 1}^{110}$	100	90	80	70	60	50	40	30	20	10	0	

Diastereomer 2

dulll

90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	ppm


```
まず~
```


[^0]

-

	1	1	1		1	1			15	1	1	1	1	10		1	70	1	1		1			1
40	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

[^1]

COSY-spectrum of Ivorenolide A in pyridine- d_{5}

${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}-\mathrm{HSQC},{ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}-\mathrm{HMBC}$ spectra of Ivorenolide A in pyridine- d_{5}

[^0]:

[^1]:

